COMUNE DI PALERMO

DIREZIONE LAVORI:

TALFERR

GRUPPO FERROVIE DELLO STATO

IMPRESA ESECUTRICE:

PROGETTO ESECUTIVO

PRIMO LOTTO FUNZIONALE CHIUSURA DELL'ANELLO FERROVIARIO IN SOTTERRANEO NEL TRATTO DI LINEA TRA LE STAZIONI DI PALERMO NOTARBARTOLO E GIACHERY E PROSEGUIMENTO FINO A POLITEAMA

STUDI, RILIEVI E INDAGINI - GEOLOGIA RELAZIONE GEOLOGICO – TECNICA (VOL. 5 di 5)

COMMESSA

LOTTO

FASE

ENTE

TIPO DOC.

OPERA/DISCIPLINA

PROGR.

REV.

R S 7 2

0 1

E

ZZ

R B

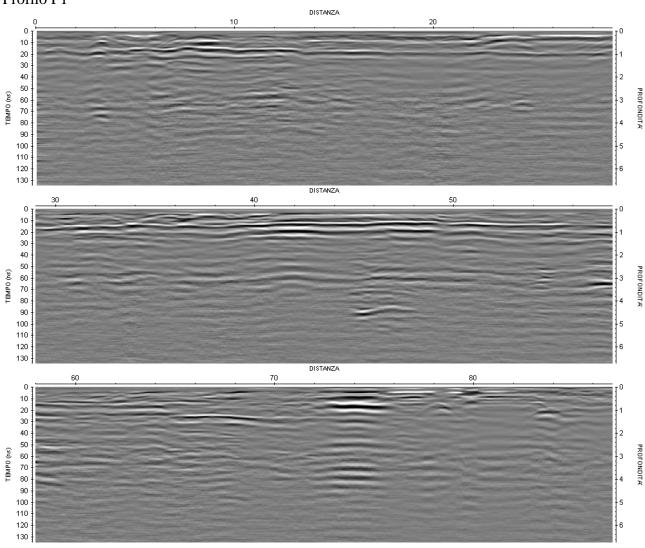
G E 0 0 0 1

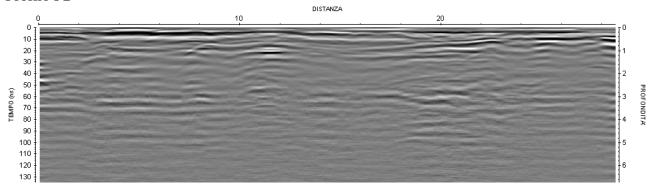
0 0 5

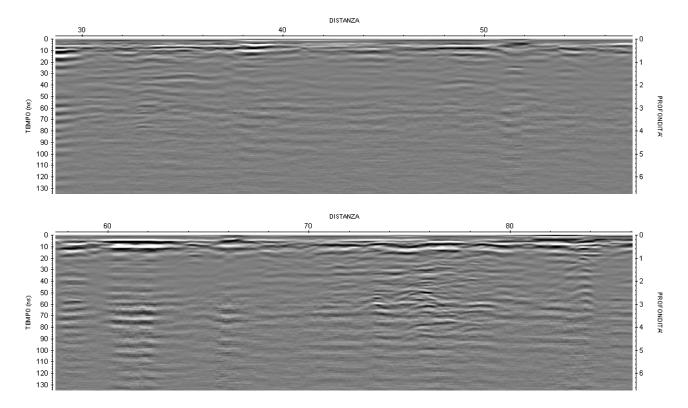
A

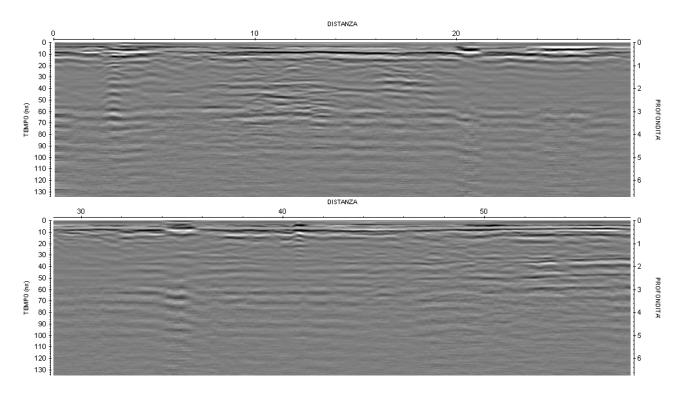
PROGETTAZIONE: ATI (Associazione Temporanea d'Imprese)

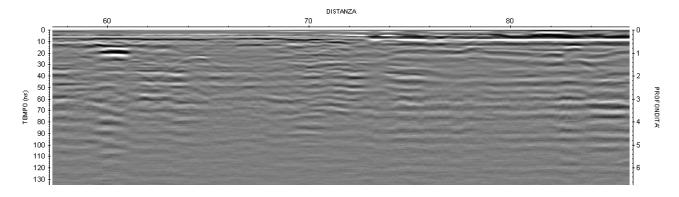
PROGIN SPA (Capogruppo Mandataria)

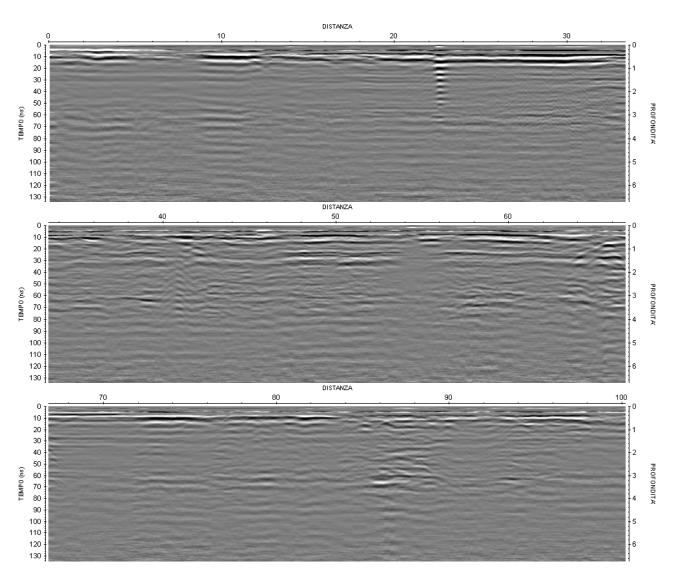

Sab (Mandante)

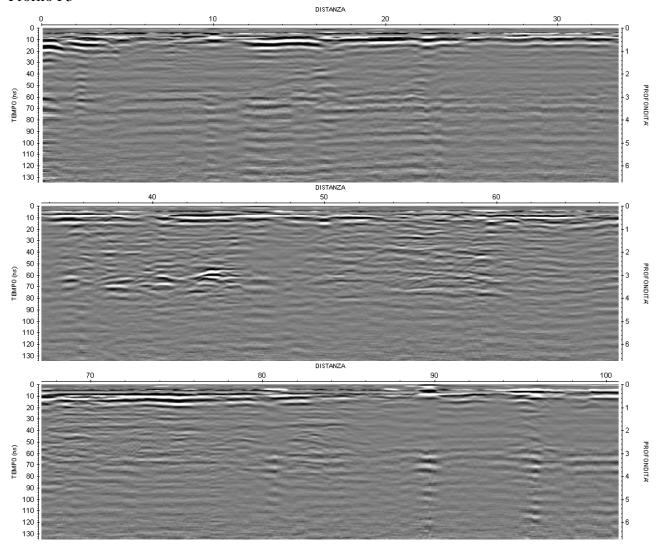

Revis.	Descrizione	Redatto	Data	Verificato	Data	Approvato/Data
Α	Emissione	Anselmo	12/03/10	Bellomo	12/03/10	S. Esposito


Nole del file:	RS7201EZZRBGE0001005_A	n: Elab.

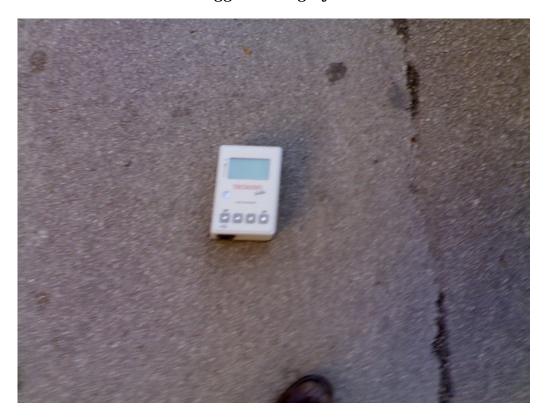

Sito Attenzione – Stazione Libertà





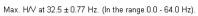


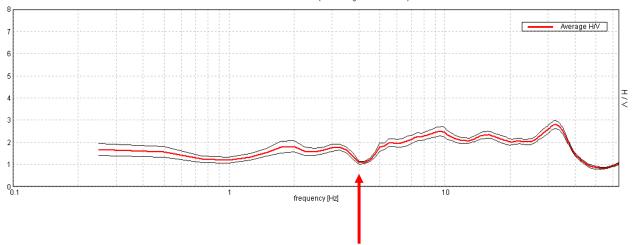
Sondaggio tromografico T2

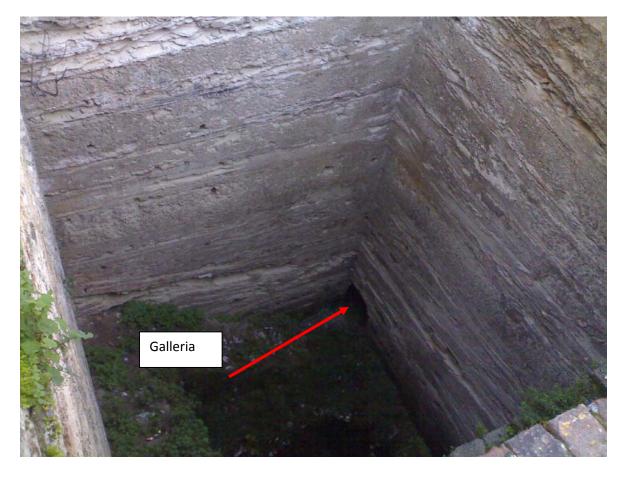

Sondaggio tromografico T4

Sondaggio tromografico T6

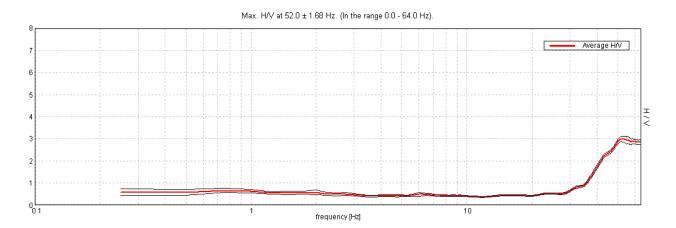
Sondaggio tromografico T8

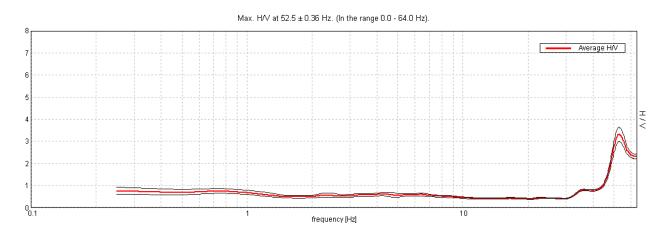


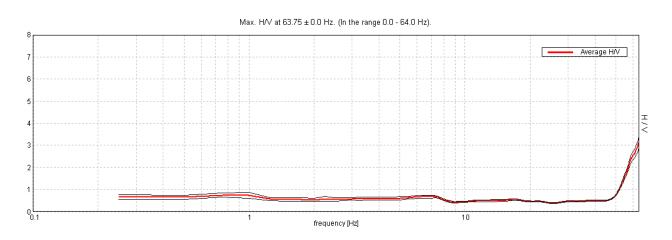



Sondaggio tromografico T10

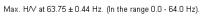
Sondaggio taratura pozzo edison

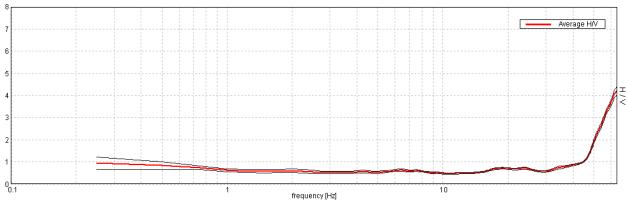


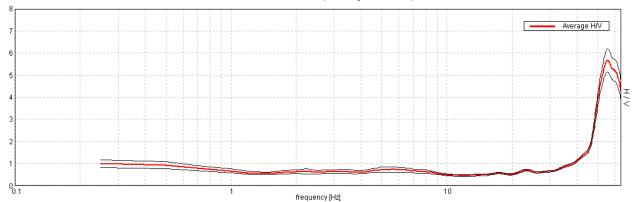


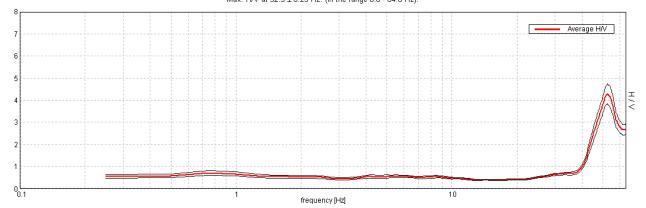

Sito Attenzione – Stazione Libertà

Sondaggio T1



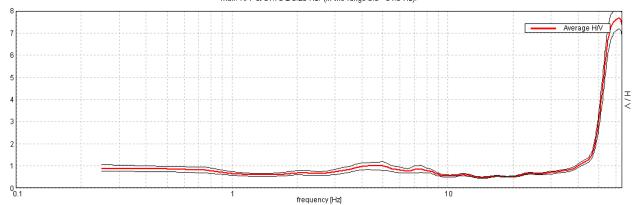

Sondaggio T2


Sondaggio T4

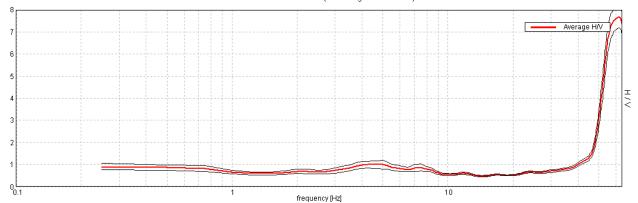


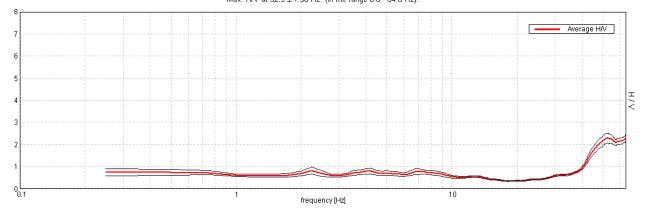
Sondaggio T5

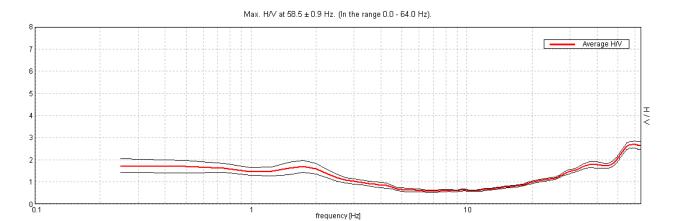
Max. H/V at 55.25 \pm 0.14 Hz. (In the range 0.0 - 64.0 Hz).



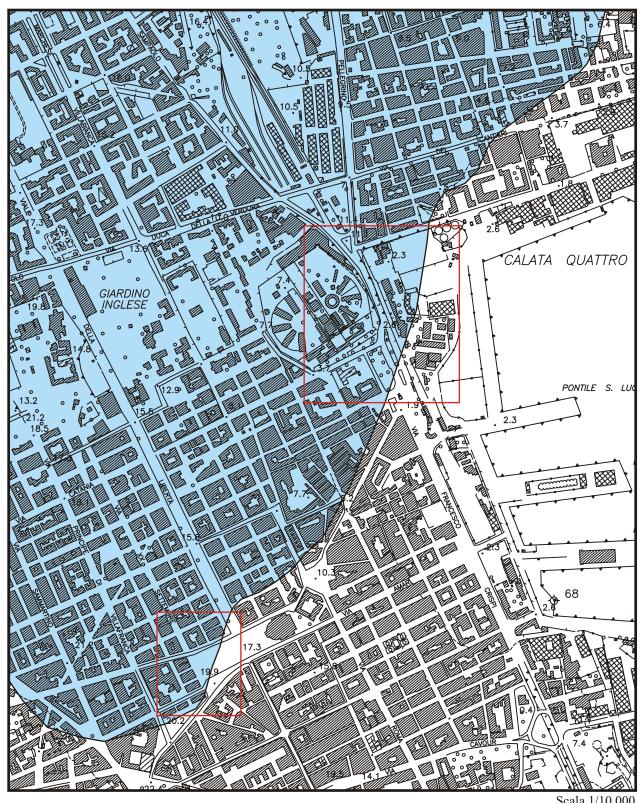
Max. H/V at 52.5 ± 0.23 Hz. (In the range 0.0 - 64.0 Hz).


Sondaggio T7

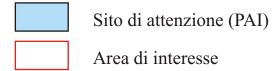


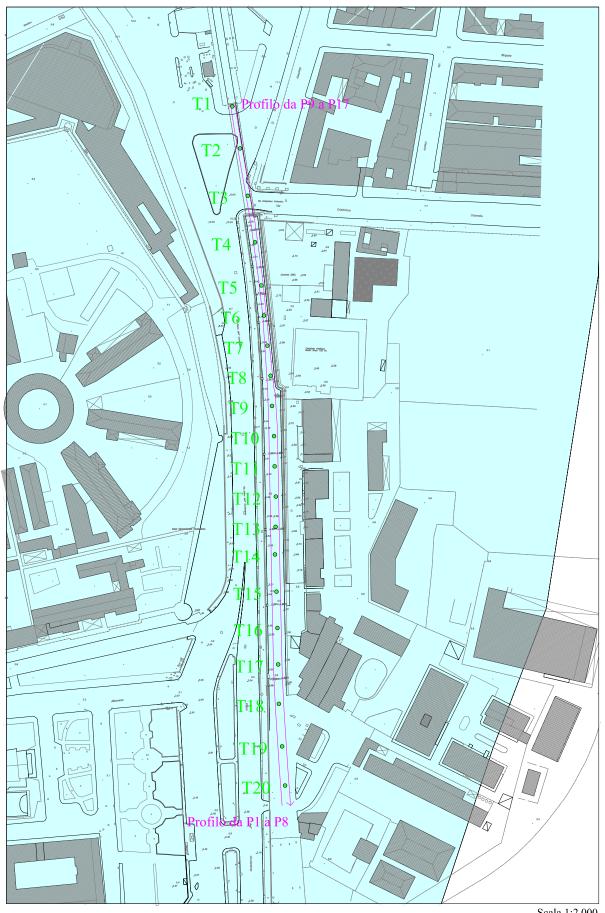

Sondaggio T8

Max. H/V at 61.75 \pm 0.28 Hz. (In the range 0.0 - 64.0 Hz).



Max. H/V at 52.5 ± 1.56 Hz. (In the range 0.0 - 64.0 Hz).




PLANIMETRIA AREE DI INTERESSE - UCCIARDONE E POLITEAMA

Scala 1/10.000

Planimetria con l'ubicazione delle indagini per la ricerca delle cavità Trincea Ucciardone

Scala 1:2.000

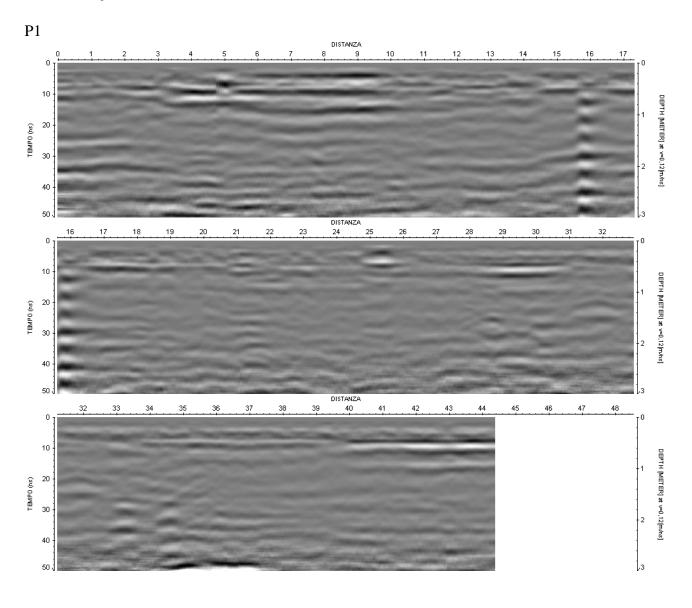
Traccia indagine Georadar

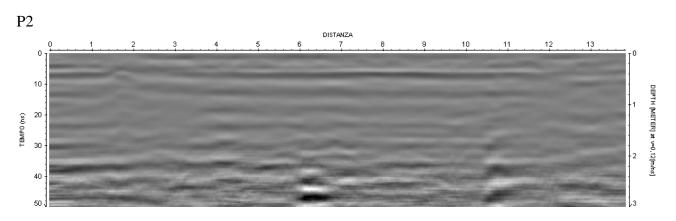
Indagine di sismica passiva a stazione singola (Tromografia)

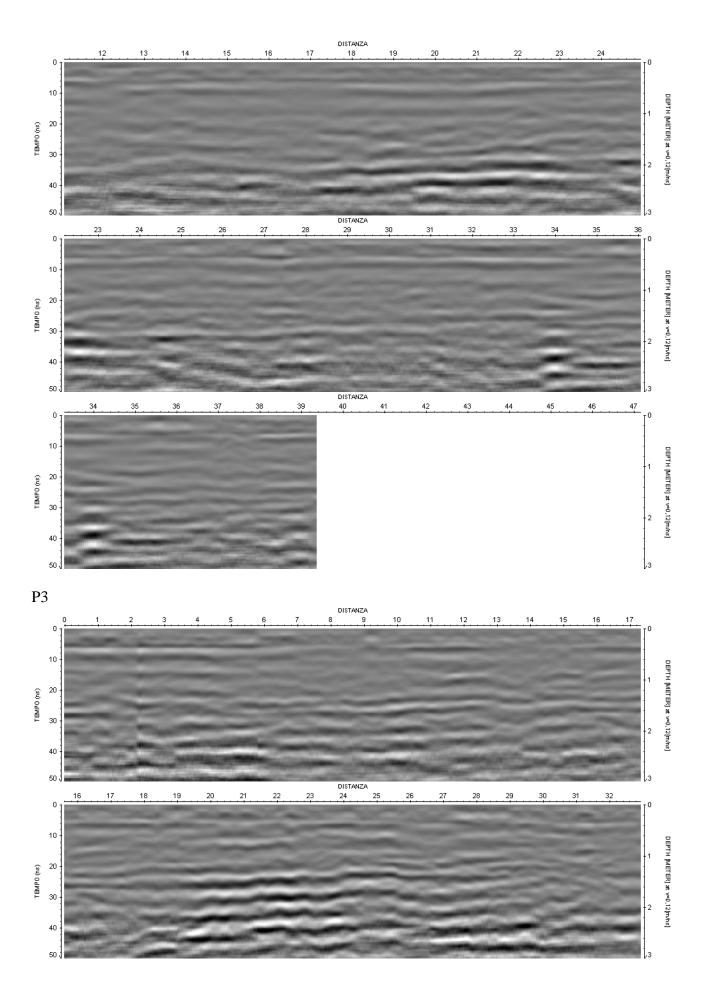

Sito di attenzione (PAI - 2005)

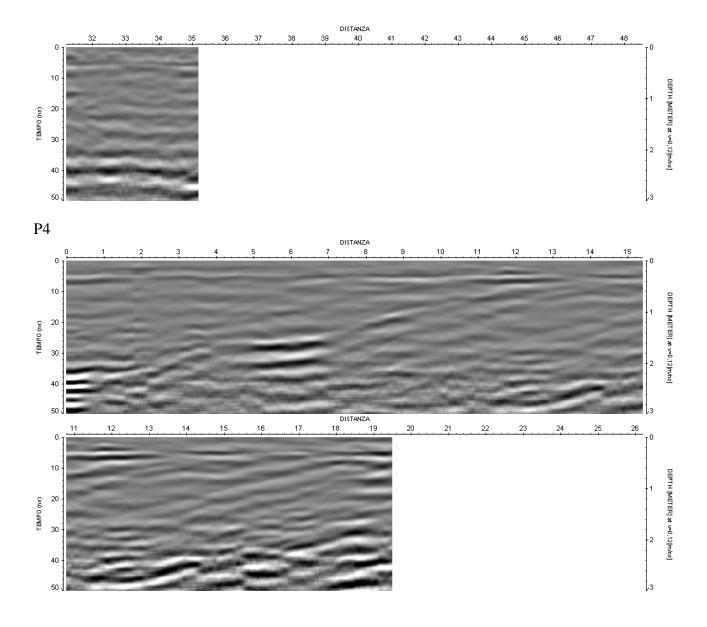
Strumentazione utilizzata – Georadar Sir 3000 GSSI

Fase di acquisizione

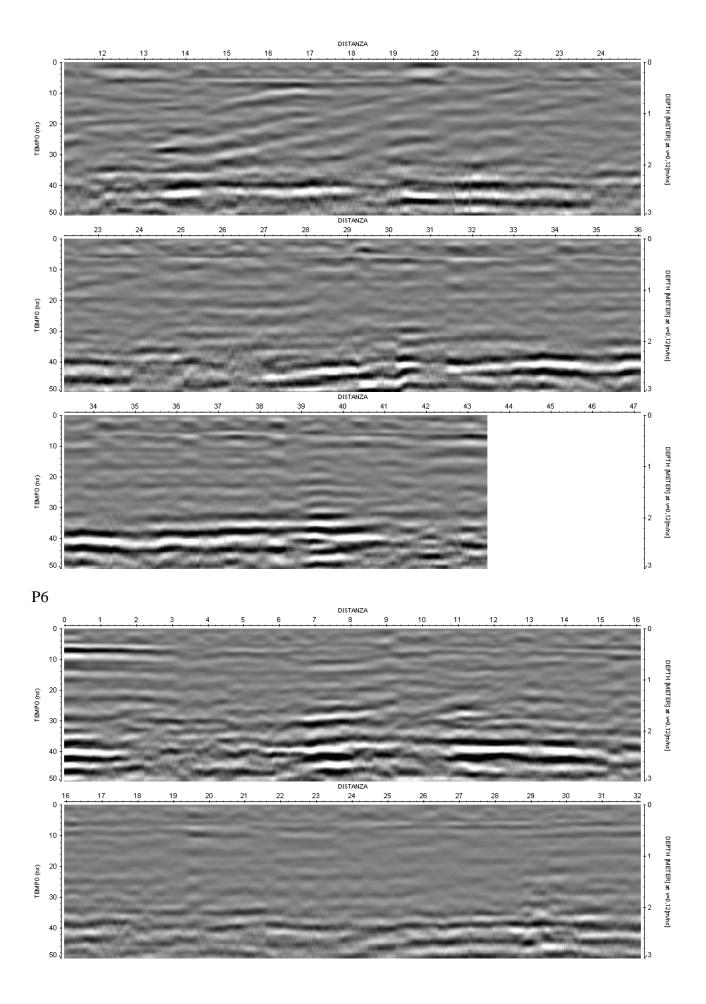


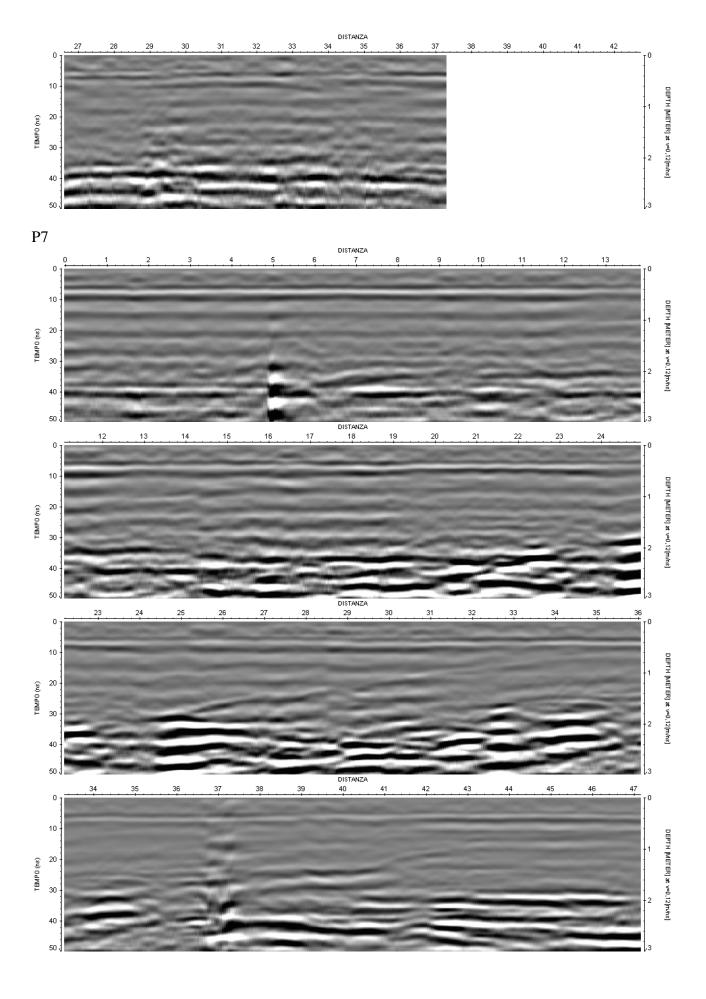


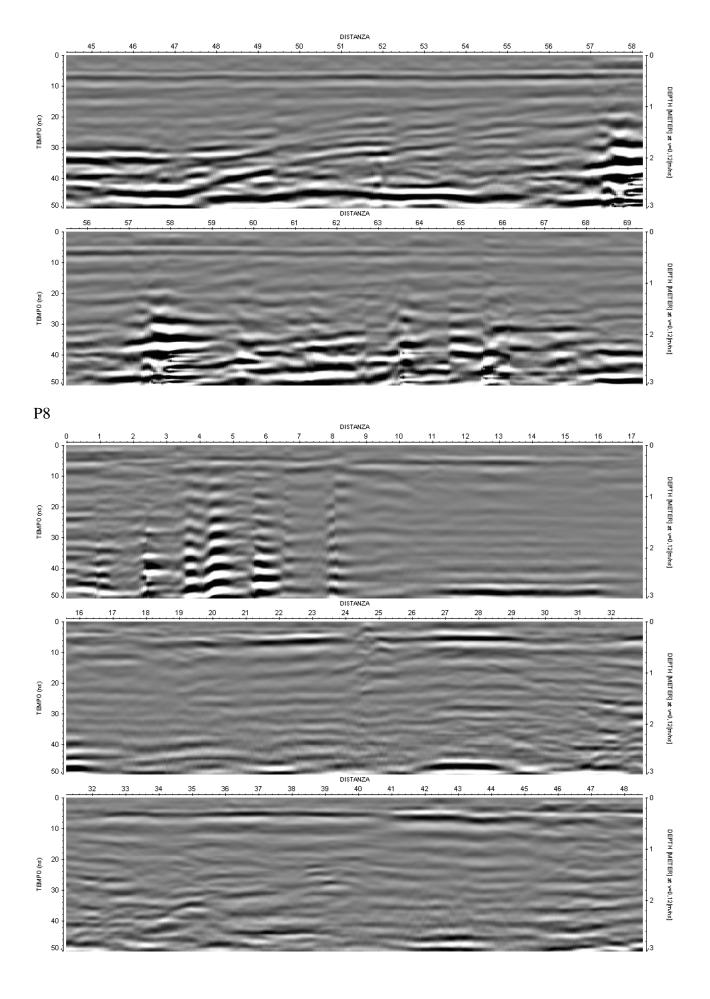


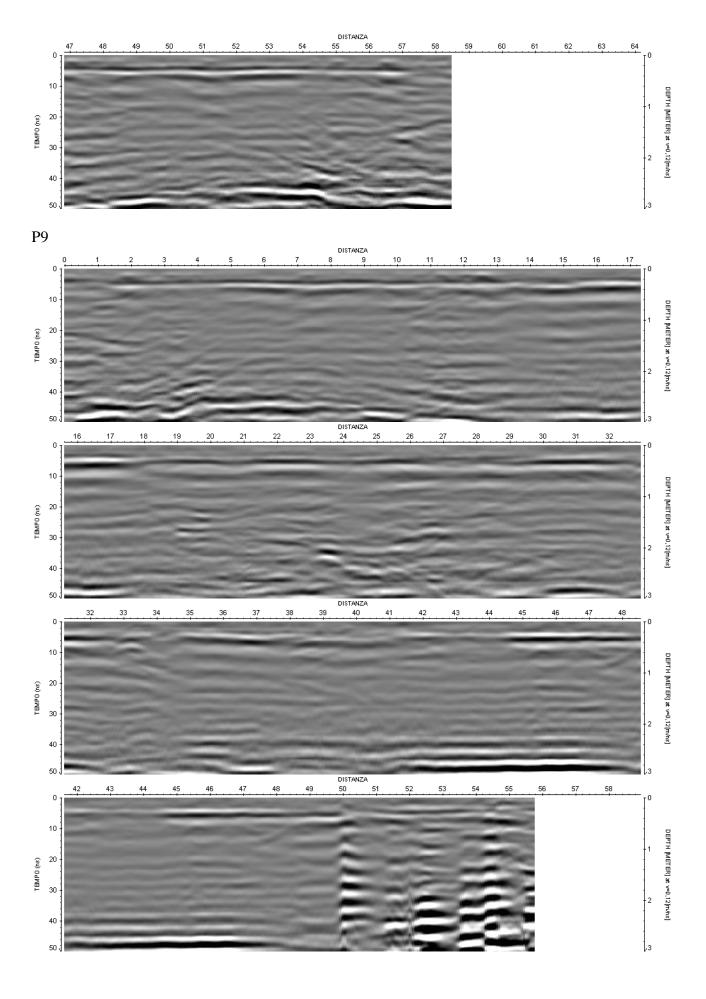


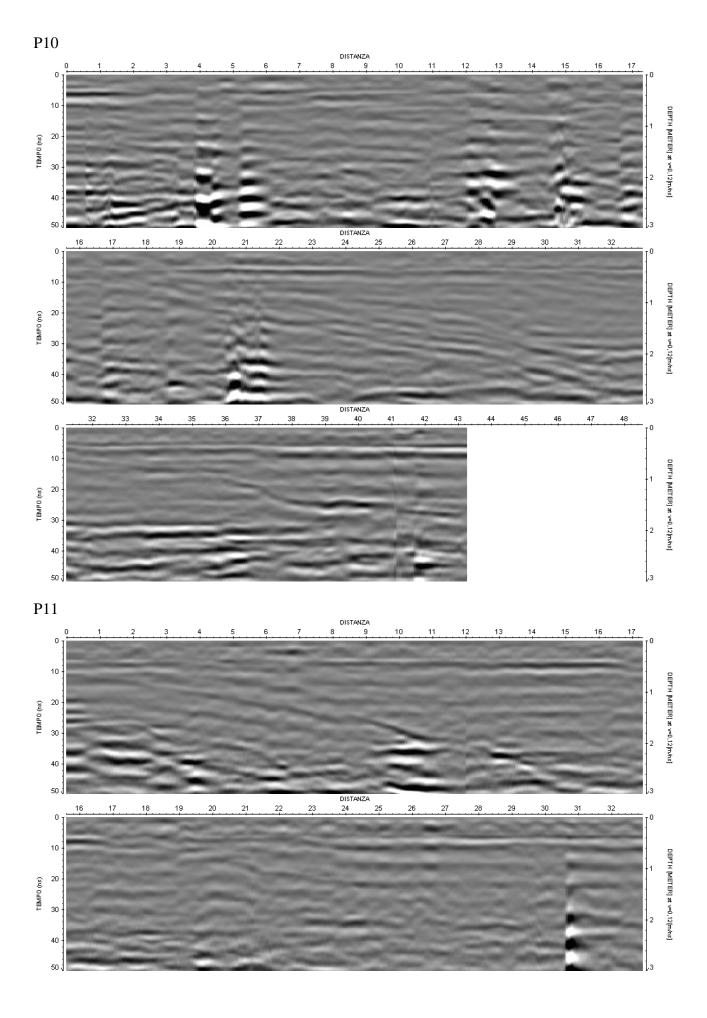

Sito attenzione – TRINCEA UCCIARDONE

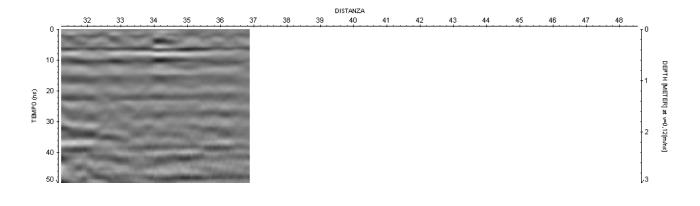


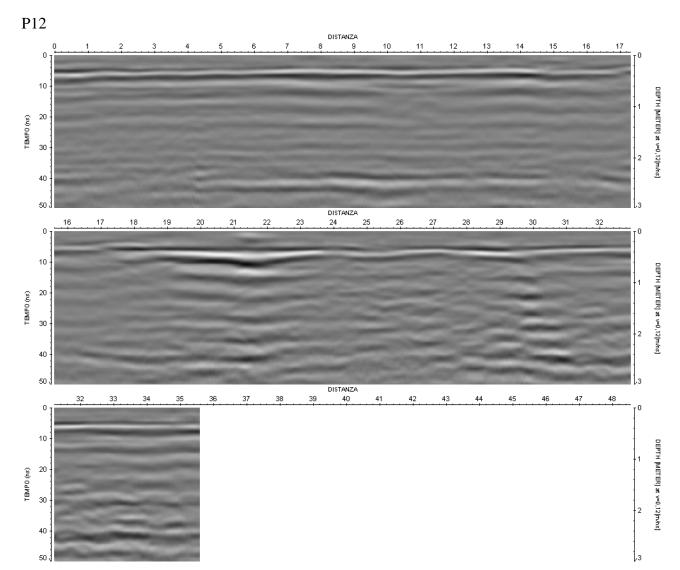


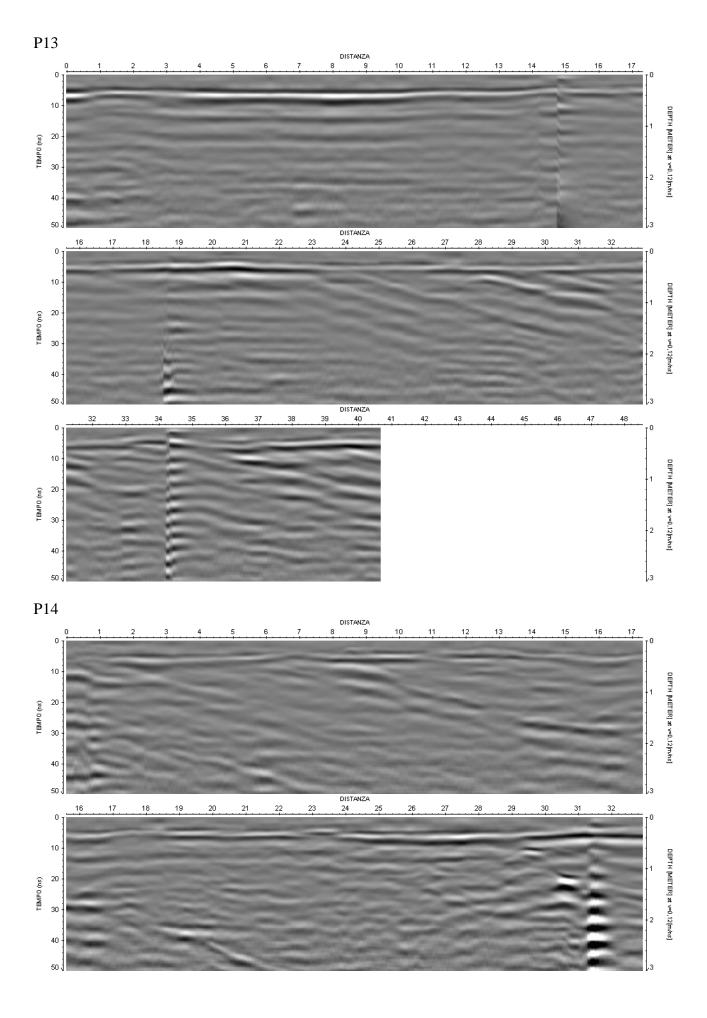


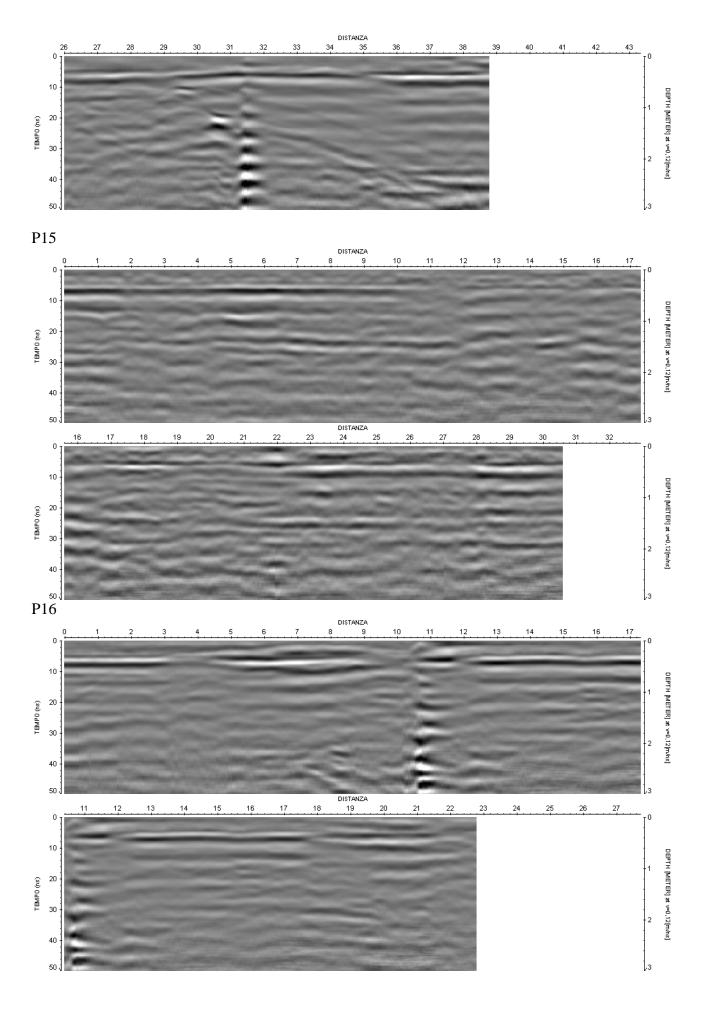


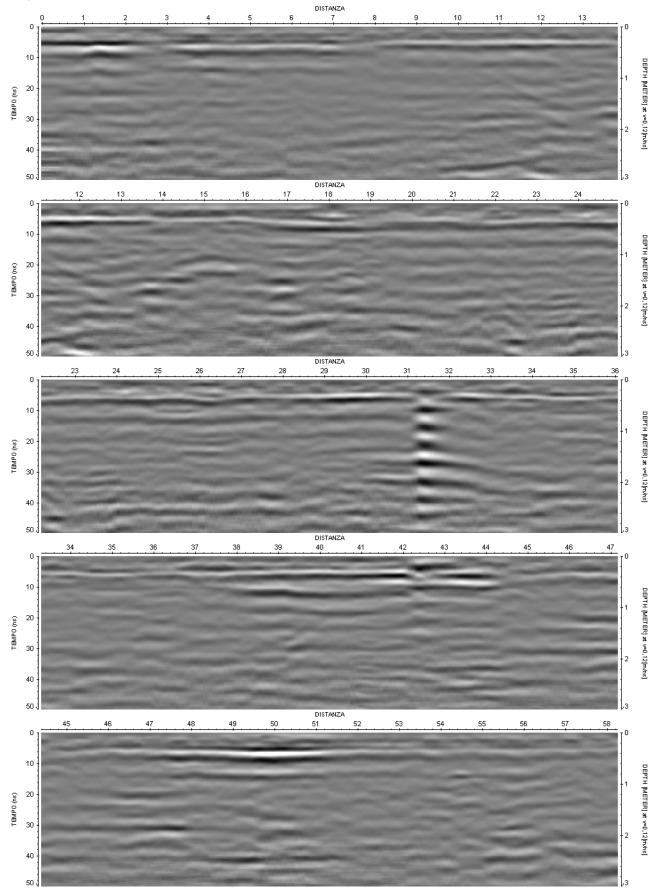


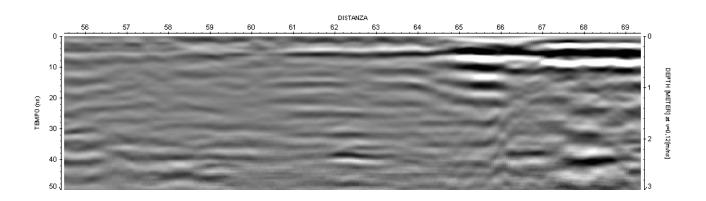












Sondaggio tromografico T2

Sondaggio tromografico T4

Sondaggio tromografico T6

Sondaggio tromografico T8

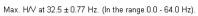
Sondaggio tromografico T10

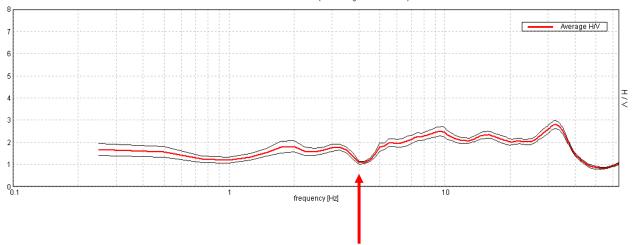
Sondaggio tromografico T12

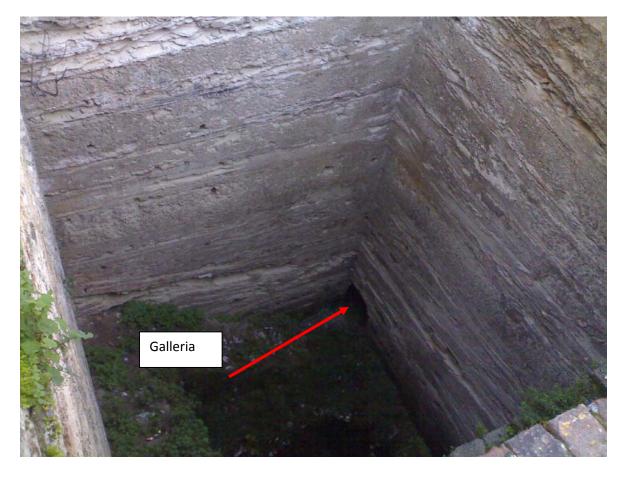
Sondaggio tromografico T14

Sondaggio tromografico T16

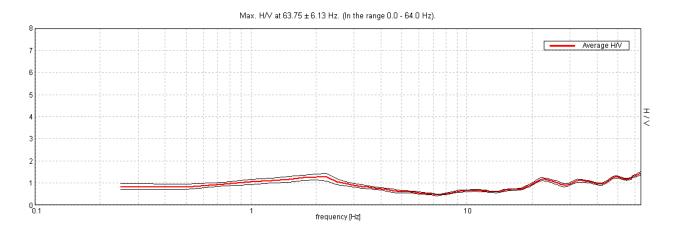
Sondaggio tromografico T18

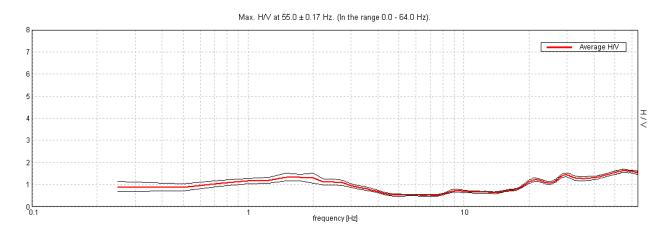


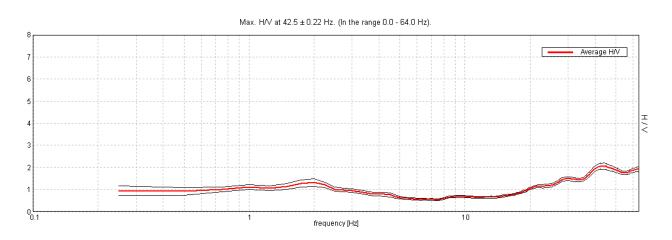


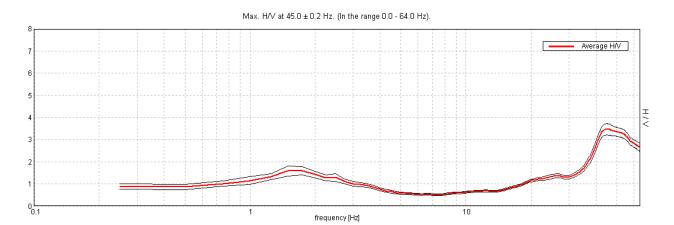

Sondaggio tromografico T20

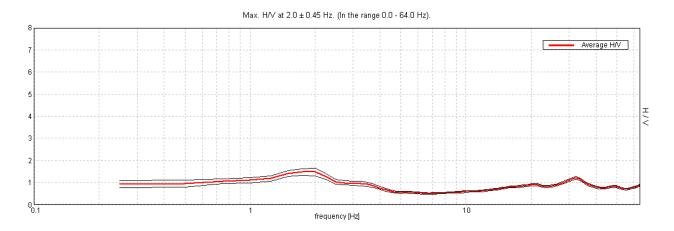
Sondaggio taratura pozzo edison

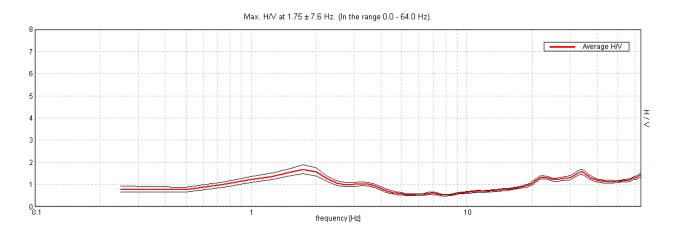


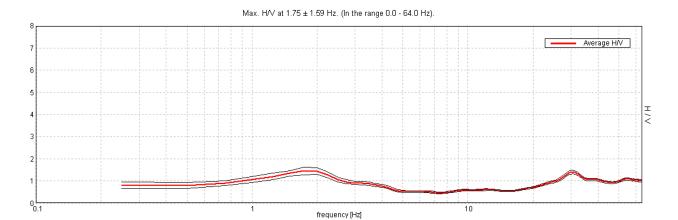


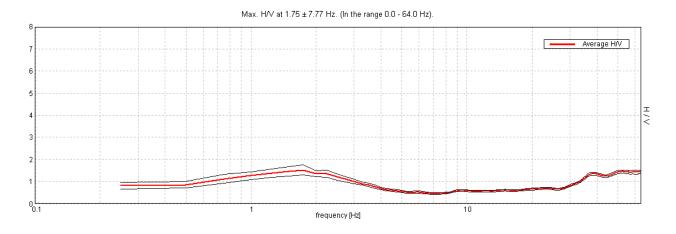

Sito Attenzione – Trincea Ucciardone

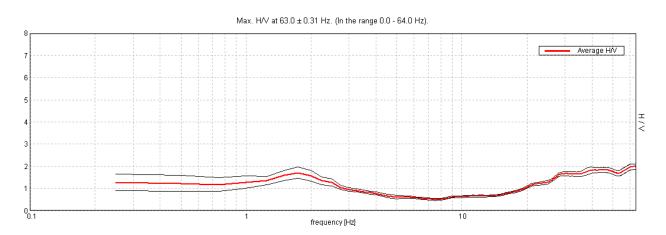

Sondaggio T1

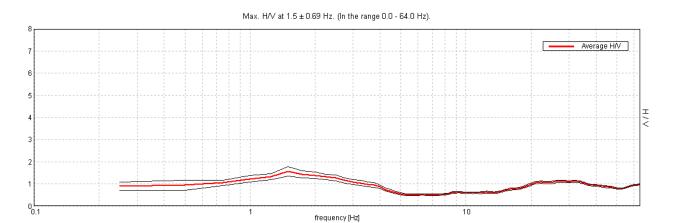

Sondaggio T2

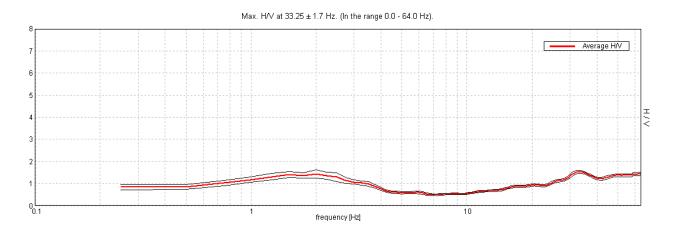


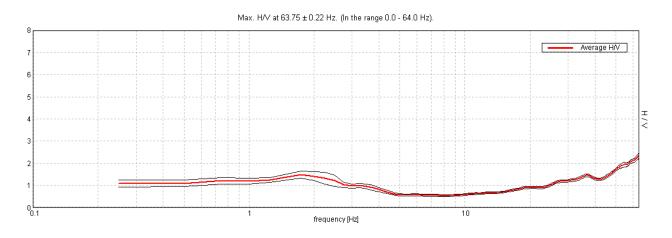


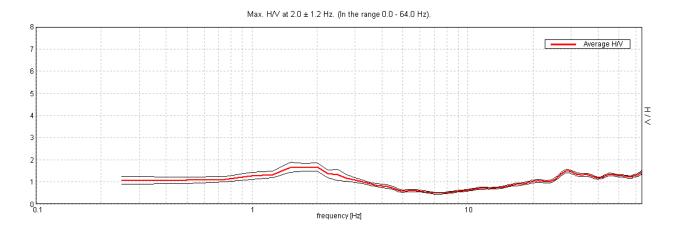

Sondaggio T5

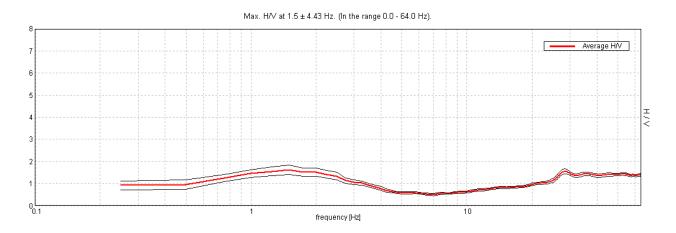


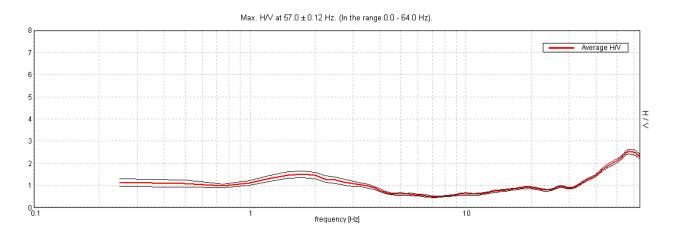


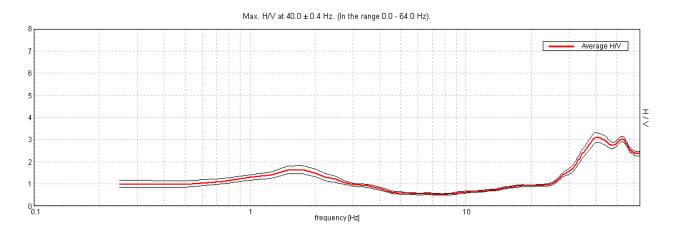

Sondaggio T8

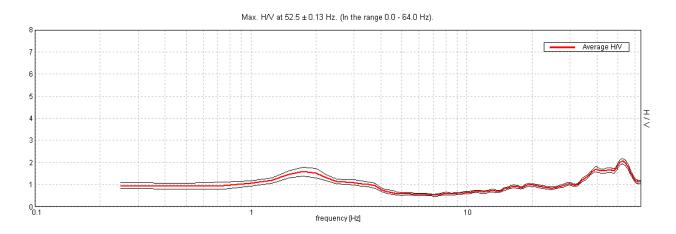


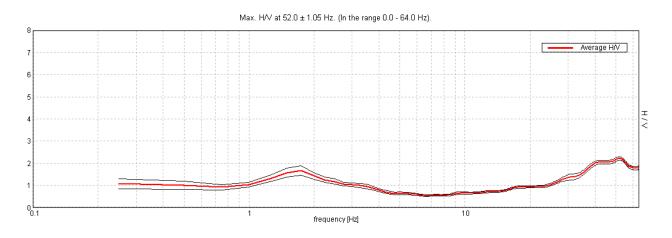


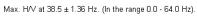

Sondaggio T11

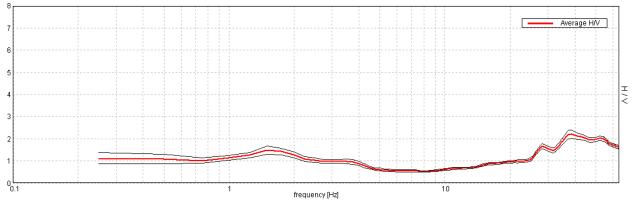




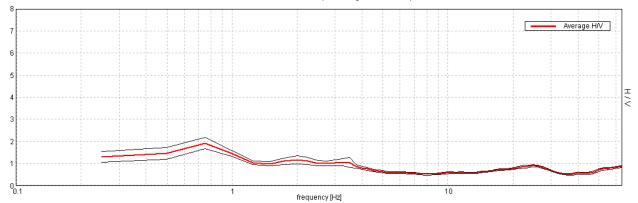

Sondaggio T14

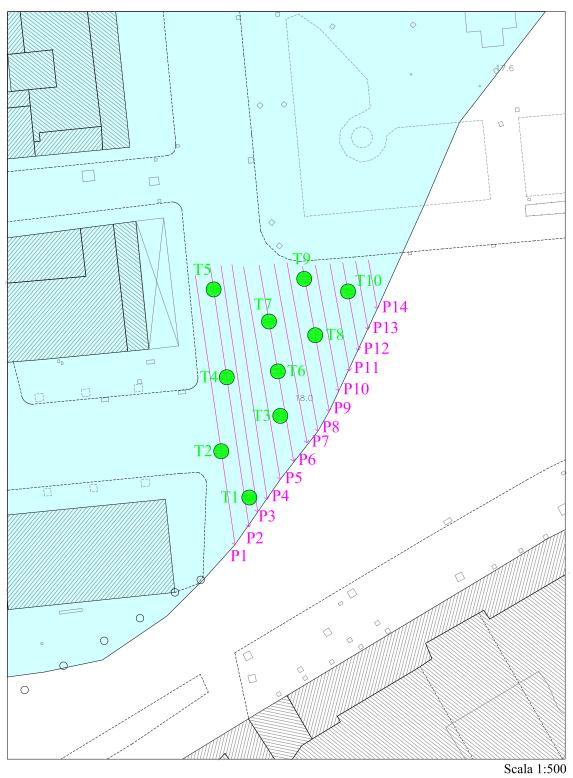






Sondaggio T17

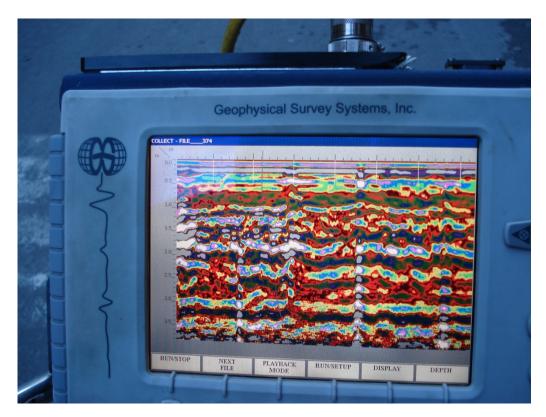




Sondaggio T20

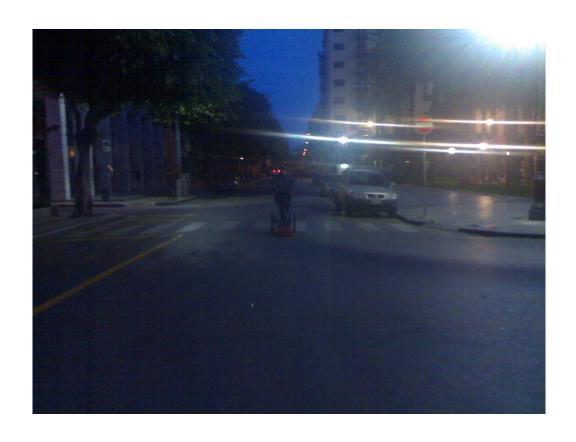
Max. H/V at 0.75 \pm 2.03 Hz. (In the range 0.0 - 64.0 Hz).

Planimetria con l'ubicazione delle indagini per la ricerca delle cavità Stazione Politeama

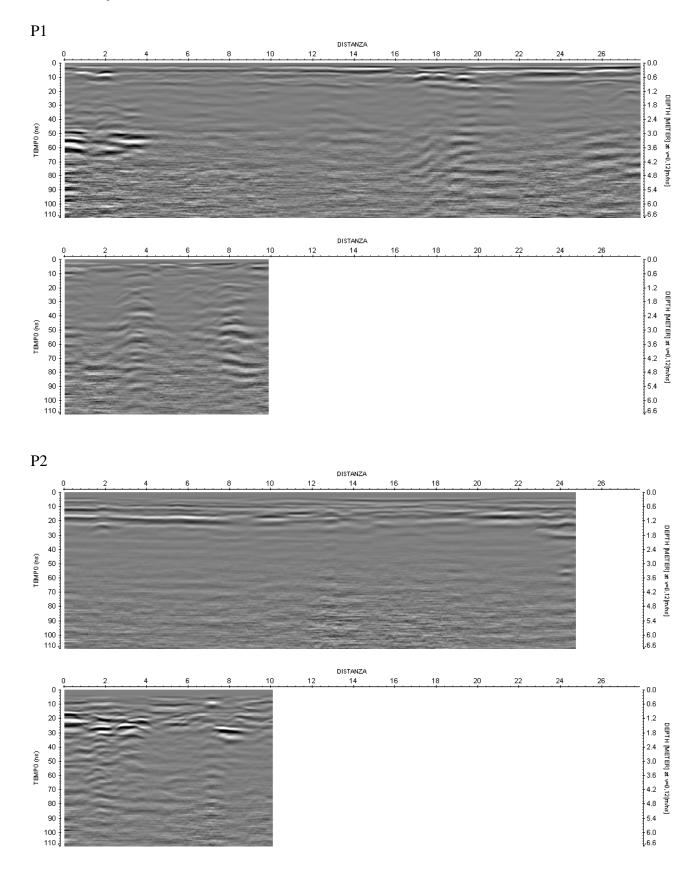


P1 Traccia indagine Georadar

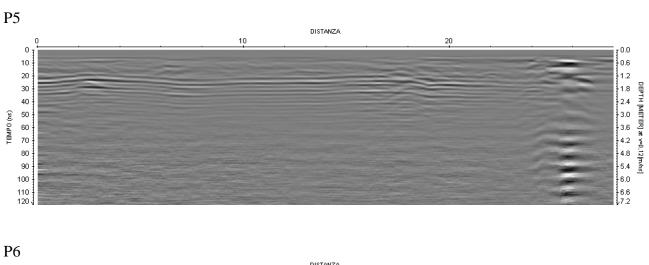
T7 Indagine di sismica passiva a stazione singola (Tromografia)

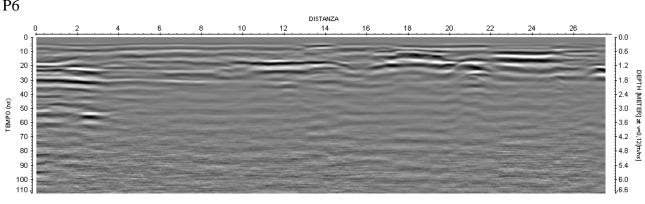

Sito di attenzione (PAI - 2005)

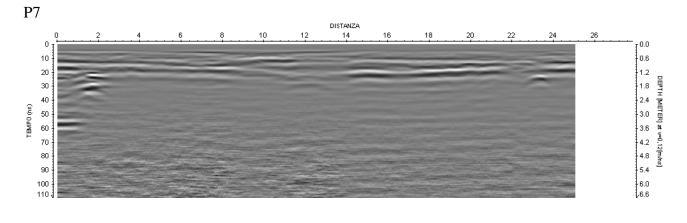
Strumentazione utilizzata – Georadar Sir 3000 GSSI

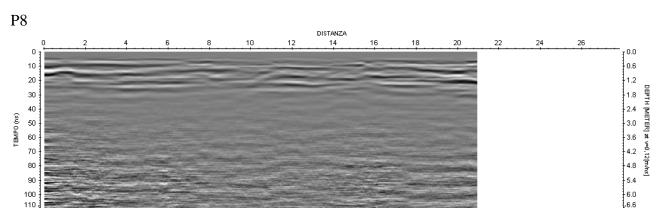

Fase di acquisizione

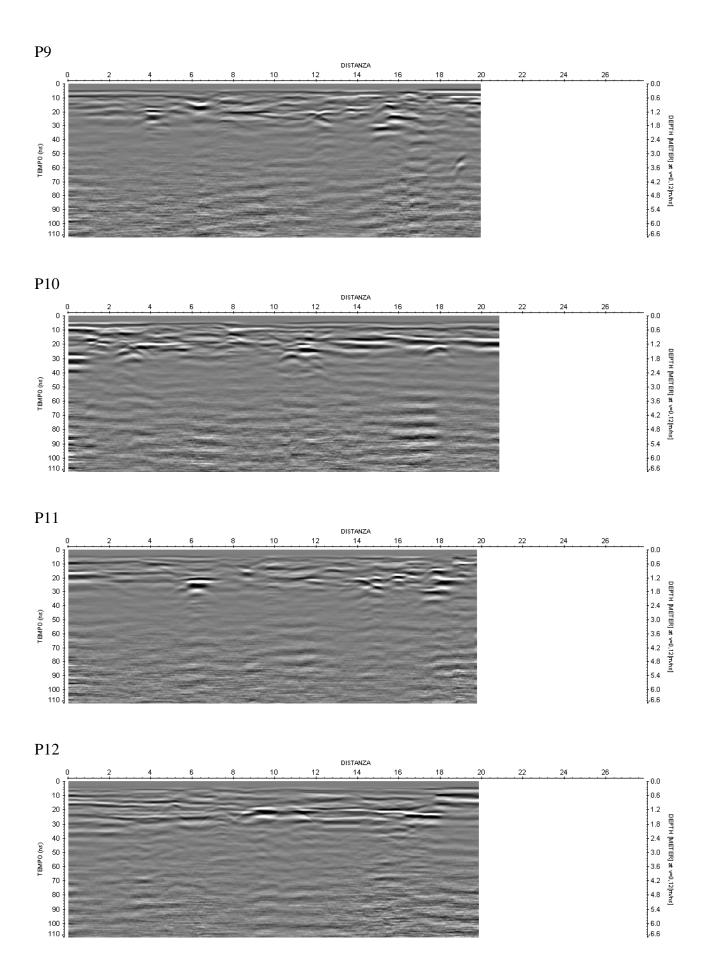


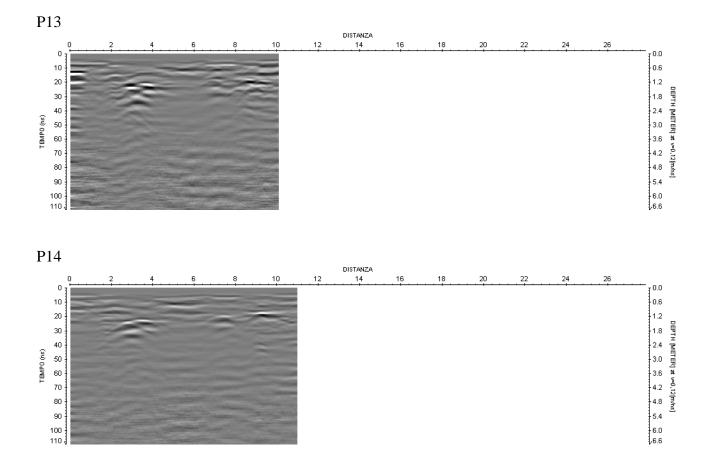





Sito attenzione - POLITEAMA







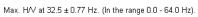
Sondaggio tromografico T2

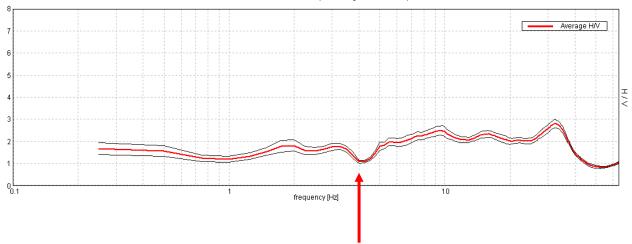
Sondaggio tromografico T4

Sondaggio tromografico T6

Sondaggio tromografico T7

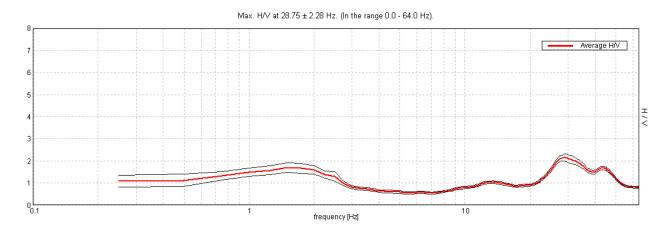
Sondaggio tromografico T8

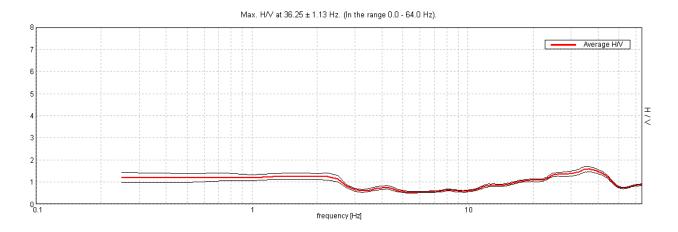


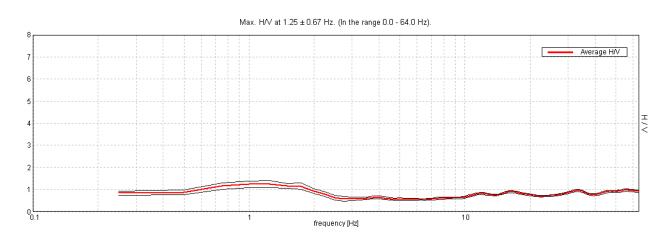


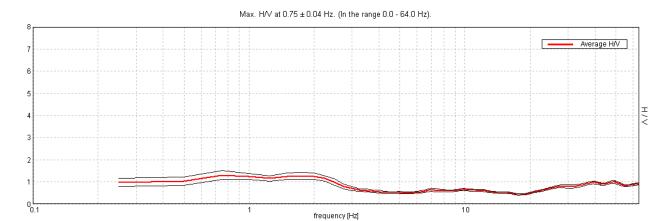

Sondaggio tromografico T10

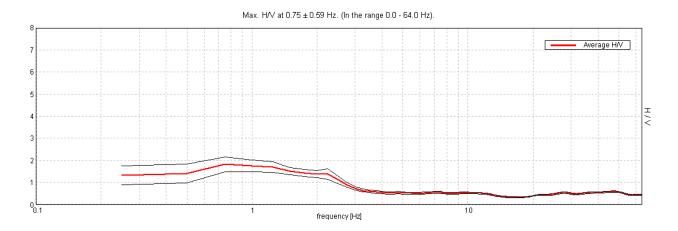
Sondaggio taratura pozzo edison

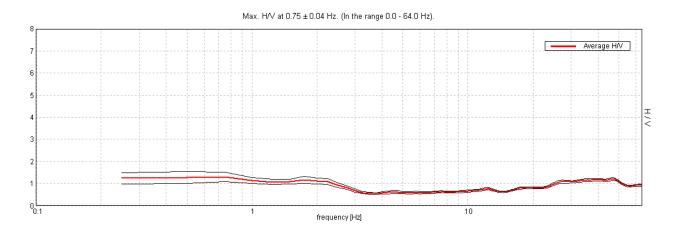


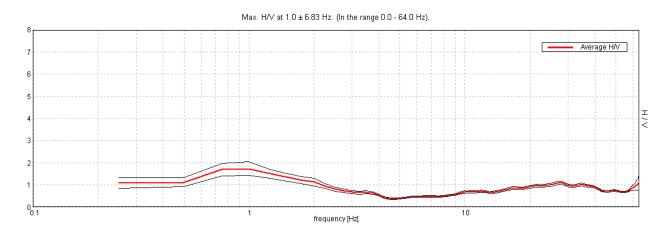


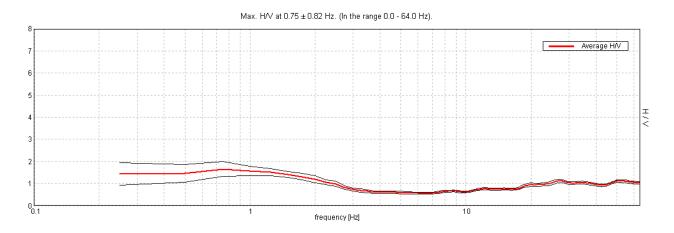

Sito Attenzione - Politeama

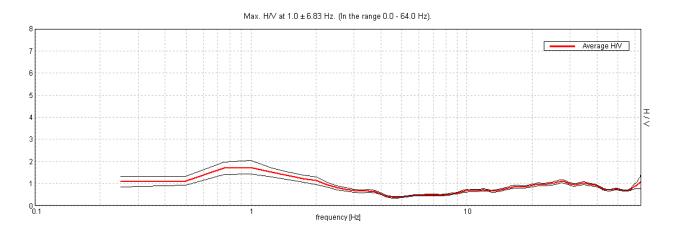

Sondaggio T1

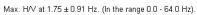

Sondaggio T2

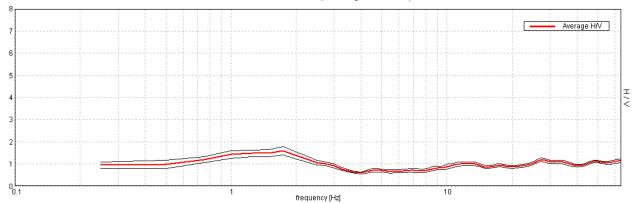





Sondaggio T5







Sondaggio T8

10. INDAGINI GEOTECNICHE DI LABORATORIO

Sui campioni inviati al laboratorio, oltre le prove di permeabilità già descritte, sono state effettuate le analisi e le prove di laboratorio necessarie per definire sia i parametri fisici che quelli meccanici.

Nello specifico sono state svolte le seguenti prove:

- Apertura e descrizione;
- Determinazione del contenuto d'acqua naturale per essiccamento in stufa;
- Determinazione del Peso dell'Unità di Volume mediante fustella tarata di diametro pari a 38 mm;
- Determinazione del peso specifico assoluto dei grani;
- Determinazione della composizione granulometrica mediante stacciatura per via umida e sedimentazione sul passante allo staccio n° 200 della serie ASTM (\emptyset = 0,075 mm);
- Determinazione dei limiti di consistenza sul passante allo staccio 40 della serie ASTM (\emptyset = 0.42 mm);
- Prova di taglio diretto del tipo consolidata drenata (CD). Tale prova è stata presentata completa della diagrammazione delle curve spostamento
 (δ) deformazione verticale, delle curve spostamento (δ) tensione tangenziale (τ) ed, infine, del grafico tensione normale applicata (σ) tensione tangenziale (τ);
- Prova di compressione triassiale CU. Tale prova è stata eseguita su provini cilindrici di diametro 3.8 cm ed altezza 7.6 cm. La velocità di deformazione é stata posta pari a 0.05 mm/min. I risultati delle prove sono stati diagrammati in grafici (σ1-σ3)/ε e τ/σ. In quest'ultimo grafico sono riportati i cerchi di Mohr riferiti sia alle tensioni totali che a quelle effettive.

Per l'indicazione delle prove eseguite sui campioni si rimanda alla tabella riepilogativa allegata nelle pagine successive.

Il Peso di Volume (γ) é stato calcolato mediante una fustella di acciaio a volume noto, secondo una media effettuata su tre prove.

La normativa di riferimento é la BS 1377: 1975 Test 15 e CNR Anno VII n. 40 - 1973.

Il Contenuto naturale d'acqua (Wn) é stata realizzata secondo una media effettuata su tre prove, sottoponendo una quantità nota del campione ad essiccamento in stufa a 105°.

La normativa di riferimento é la ASTM D-2216 e CNR-UNI 10008.

Il peso specifico é stato calcolato sulla porzione di terra passante al setaccio ASTM N° 200 (Ø=0.075 mm), tramite la media su due valori ricavati per mezzo di un picnometro ad acqua da 100 cm³.

La normativa di riferimento é la ASTM C 128-84, D 854-83 e la CNR UNI 10010, 10013.

L'analisi granulometrica é stata realizzata tramite vagliatura meccanica per la porzione di terra avente grana di dimensione superiore a 0.075 mm, invece per il materiale avente diametro inferiore viene riservata l'analisi per sedimentazione con il metodo del densimetro.

La serie di setacci utilizzata è ASTM D 422 ed UNI 8520.

Per il materiale fine è stata eseguita una procedura per via umida secondo la normativa ASTM D 2217 - Metodo A, seguendo le indicazioni di Bowles (1978).

La classificazione granulometrica è stata eseguita tenendo conto di quanto esposto nella normativa AGI (1978) e BS.

I limiti di consistenza (Atterberg) sono stati determinati in accordo alla normativa CNR-UNI 10014 ed alla ASTM D 4318-84.

Il limite di liquidità è stato calcolato mediante la coppa di Casagrande sulla sola frazione di terra passante al setaccio ASTM N° 40 (\emptyset = 0.42 mm); il metodo utilizzato é quello dell'interpolazione dei tre punti.

Il limite di plasticità è stato determinato tramite la manipolazione dello stesso materiale utilizzato per la determinazione del limite di liquidità, sino a quando, creando dei bastoncini aventi diametro di 3 mm, questi si screpolavano o rompevano.

La prova di taglio è stata realizzata con l'apparecchio di Casagrande su tre provini cilindrici o quadrati aventi altezza di 2 cm e diametro di 6 cm; la fase di consolidazione si é protratta per 24 h, sino al raggiungimento della consolidazione secondaria.

La velocità di rottura é stata scelta tenendo conto del tempo di consolidazione del materiale di prova; sono stati analizzati i tempi relativi al 50% ed al 100% della consolidazione, valori che hanno permesso di risalire alla velocità necessaria per raggiungere la rottura utilizzando le formule proposte da Bowles (1970), Ladd (1971) e Gibson ed Henkel (1954).

I carichi applicati durante la fase di consolidazione sono stati compresi tra 98 e 490 KN/m² (= tra 1 e 5 Kg/cm²).

La normativa di riferimento é la ASTM D 3080-72.

La prova di compressione triassiale CU è stata eseguita su provini cilindrici di diametro 3.8 cm ed altezza 7.6 cm. La velocità di deformazione é stata posta pari a 0.05 mm/min.

I provini sono stati preliminarmente saturati, mediante applicazione di gradini alternati di pressione in cella e di back pressure, sino ad un ottenimento del valore del parametro B di Skempton prossimo a 1.

I gradini di saturazioni sono stati effettuati applicando una back pressure inizialmente di 50 KPa e successivamente di 100 KPa. Una volta

raggiunta la saturazione i provini sono stati sottoposti a consolidazione utilizzando pressioni di cella comprese 100 KPa e 500 KPa.

I risultati delle prove sono stati diagrammati in grafici $(\sigma 1-\sigma 3)/\epsilon$ e τ/σ . In quest'ultimo grafico sono riportati i cerchi di Mohr riferiti sia alle tensioni totali che a quelle effettive.

La normativa di riferimento é la ASTM D-4767.

Nelle pagine seguenti sono state riportate oltre ai certificati riferiti alle singole prove ed analisi, le seguenti tabelle riassuntive:

- tabella riassuntiva di tutte le prove ed analisi realizzate;
- tabella riepilogativa delle caratteristiche fisiche dei campioni;
- tabella riepilogativa delle caratteristiche meccaniche dei campioni.

QUADRO RIEPILOGATIVO DELLE CARATTERISTICHE FISICHE E MECCANICHE DELLE TERRE

	CARATTERISTICHE FISICHE												CARAT	TERISTICH	E MECCAN	NICHE	PERMEABILITA'
SOND.	CAMP.	PROF.	W	γ	γd	Gs	n	е	Sr	WL	Wp	Wr	TIPO DI	cu	C'	φ'	К
n°	n°	m	%	kN/mc	kN/mc		%		%	%	%	%	PROVA	kN/mq	kN/mq	0	_ A
6	3	13,00	29,89	18,26	14,06	27,42	48,73	0,950	86,23				TD		7,36	33	1,969E-06
6	4	19,90	28,48	19,03	14,81	27,42	45,98	0,851	91,74				TD		2,71	36	1,931E-06
													TX-CU		4,00	32	
6	5	22,00	23,00	20,12	16,36	26,94	39,28	0,647	95,78	18,42	15,47	12,86	TD		5,80	36	2,840E-06
													TX-CU		6,00	30	
6	6	29,60	24,08	19,59	15,79	26,51	40,44	0,679	94,00	25,23	19,15	16,17	TD		10,29	32	1,044E-05
													TX-CU		15,00	30	
7	1	10,50	34,04	18,75	13,99	27,34	48,84	0,954	97,50				TD		4,49	29	1,754E-06
													TX-CU		18,00	30	
12	1	11,30	24,11	20,06	16,16	27,58	41,40	0,706	94,14				TD		3,78	36	1,230E-06
12	2	17,00	18,90	20,05	16,86	26,68	36,80	0,582	86,62	22,55	17,91	12,69	TD		12,60	32	2,313E-06
9	1	6,20	17,73	20,10	17,07	26,18	34,79	0,533	87,02	34,53	15,40	12,04	TX-CU		55,00	24	4,090E-05
		40.00	44.00	40.50	47.40	07.07	07.07	0.507	55.50	00.04	47.47	45.40	TD		04.05	0.4	4.4075.00
9	2	13,00	11,88	19,53	17,46	27,87	37,37	0,597	55,50	29,81	17,17	15,12	TD		21,05	24	1,497E-06
	_	44.70	40.50	40.04	40.00	07.00	07.00	0.040	FF F0	20.55	40.07	0.00	TD		04.05	0.5	4.0405.00
9	3	14,70	12,53	18,91	16,80	27,06	37,90	0,610	55,56	28,55	13,07	2,63	TD		31,95	25	1,018E-06
-	4	10.00	40.00	20.50	40.00	20.50	30,93	0,448	72,92	22.20	40.04	40.45	TD		25.05	27	4.4645.07
9	4	18,00	12,32	20,56	18,30	26,50	30,93	0,440	12,92	23,28	13,21	12,45	TD		35,85	27	4,464E-07
11 bis	-1	17,50	13,07	20,03	17.71	26,41	32,92	0,491	70,32	30,04	18,07	13,44	TD		24,10	27	7,490E-07
11 015	'	17,50	13,07	20,03	17,71	20,41	32,32	0,401	70,52	30,04	10,07	13,44	10		24,10	21	1,4300-01
11 bis	2	19.10	13,46	19,92	17,56	26.66	34.15	0,518	69,21	30,48	16,23	12,89					
11013		10,10	15,40	10,02	17,50	20,00	04,10	0,010	00,21	30,40	10,23	12,00					
10	1	10.70	12,41	21.38	19.02	26.84	29,14	0.411	81.01	25.04	17.76	13.25	TD		13,60	29	9.271E-06
	<u> </u>	.0,70	12,11	21,00	10,02	20,01	20,11	0,111	51,01	20,01	.,,,,,	10,20	TX-UU	325,22	10,00	20	5,2112 00
10	2	17.60	11.02	19.89	17,92	26,31	31.91	0.469	61,88	19.93	12,60	6.39	TD	020,22	18,51	29	
-10		.7,00	11,02	10,00	11,02	20,01	51,01	0,100	31,00	10,00	12,00	0,00	TX-UU	279,26	10,01	20	
11	1	9.10	9.88	20,19	18,37	26,58	30,87	0.447	58,81	25,68	17.03	12,23	TD	_, _,_0	48,57	26	3,740E-06

			RIEPILO	GO DEL	LE CAR	ATTERIS	STICHE I	FISICHE		RIEPILOGO DELLE CARATTERISTICHE MECCANICHE						HE	PERMEABILITA'
			Tuel IE	OC DEE													
CAMPIONE	PROF.	γ	γ_s	$\gamma_{\mathbf{d}}$	Wn	WI	Wp	S	n	C'	φ'	C'(Res)	φ'(Res)	Q_{max}	C_{u}	φu	K
	(m)	$\mathrm{KN/m}^3$	KN/m ³	$\mathrm{KN/m}^3$	%	%	%	%	%	$\mathrm{KN/m}^2$	gradi	KN/m^2	gradi	KN/m ²	KN/m^2	gradi	cm/sec
SE04 C1	3,50	17,04	25,88	17,04					34,16								1,03E-04
SE04 C2	6,50	16,17	26,16	10,38	55,80			97,82	60,33	6,54	34°						
SE04 C3	8,50	16,66	26,19	11,85	40,54	41,42	20,53	89,43	54,75	2,83	27°						3,36E-08
SE04 C4	13,00	16,66	26,04	11,40	46,24	48,38	20,80	95,48	56,24	16,5	21°				49,33	8°	2,21E-08
SE04 C5	19,00	16,80	26,08	11,90	41,16	43,46	23,44	91,79	54,37	7,00	26°						1,55E-08
SE06 C1	8,70	18,14	25,94	14,09	28,74			90,37	45,68	1,5	36°						5,88E-05
SE06 C2	10,40	19,83	32,34	14,99	32,34	23,89	-	92,03	53,67	1,38	29°						4,57E-08

CAMPIONE DI ROCCIA

					CARATT	ERISTIC	HE FISICH	ΙE					CARAT	TERISTICH	IE MECCA	NICHE	PERMEABILITA'
SOND.	CAMP.	PROF.	W	γ	γd	Gs	n	е	Sr	WL	Wp	Wr	TIPO DI	σ	r		
n°	n°	m	%	kN/mc	kN/mc		%		%	%	%	%	PROVA	kN/mq	kg/cmq		
2	CL1	5,50		20,56									DL	10020	102,17		
2	CL2	16,50		16,75									DL	7819	79,73		
2	CL3	16,80		15,69									DL	4759	48,53		
3	CL1	2,70											DL	1490	15,19		
3	CL2	9,50											DL	936	9,54		
3	CL3	16,00											DL	3844	39,19		
5	CL1	6,00											DL	4843	49,38		
8	1	20,50											DL	15267	1556,72		
11	2	18,60		24,99									DL	8822	89,95		
11	CR1	14,10		23,89									DL	7645	77,96		
11	CR2	17,80		24,20									DL	4814	49,09		
11 bis	3	21,00		24,76									DL	2592	26,43		

ELENCO DELLA SIMBOLOGIA UTILIZZATA

Descrizione Peso specifico	Simbolo γ_s	Unità di misura KN/m ³
Peso dell'Unità di Volume	γ	KN/m ³
Peso dell'Unità di Volume all'inizio della prova	γi	KN/m ³
Peso dell'Unità di Volume alla fine della prova	γf	KN/m ³
Peso secco dell'unità di volume	γd	KN/m ³
Contenuto naturale d'acqua	Wn	% - g
Contenuto naturale d'acqua all'inizio della prova	Wi	% - g
Contenuto naturale d'acqua alla fine della prova	Wf	% - g
Limite di Liquidità	Wl	% - g
Limite di Plasticità	Wp	% - g
Indice di Plasticità	Ip	% - g
Indice di Consistenza	Ic	-
Limite di Ritiro	Ws	% - g
Indice dei vuoti	E	-
Indice dei vuoti all'inizio della prova	Eo	-
Porosità	N	%
Coefficiente di saturazione	S	%
Coesione drenata	c'	KN/m^2
Coesione non drenata	C_{u}	KN/m^2
Angolo di attrito interno in condizioni drenate	φ'	Gradi
Angolo di attrito interno in condizioni non drenate	φ_{u}	Gradi
Tensione tangenziale	τ	KN/m^2
Tensione normale	σ	KN/m^2
Deformazione orizzontale	$\epsilon - \delta$	% - mm
Resistenza a compressione non confinata (E.L.L.)	Qmax	N/mm ²
Modulo edometrico	Ed	KN/m^2
Indice di compressibilità	Av	m^2/KN
Coefficiente di compressibilità di volume	Mv	m^2/KN
Coefficiente di consolidazione	Cv	cm²/sec
Coefficiente di permeabilità	K	cm/sec

11. CONSIDERAZIONI IDROLOGICHE

Gli interventi di progetto, con particolare riferimento al tratto compreso tra la Trincea Ucciardone e la stazione Porto, ricadono all'interno di un'area che, dal punto di vista idrografico, nel passato afferiva interamente al bacino del Canale del Passo di Rigano.

Tale Canale, costruito nel 1856 sottende un esteso bacino, di dimensioni dell'ordine di circa 60 kmq, delimitato dai rilievi di Monte Cuccio, Bellolampo, Cozzo Grillo e Cozzo S. Croce ed il suo percorso originariamente si concludeva proprio in corrispondenza della zona di attraversamento della Trincea Ucciardone (vd. Carta allegata in scala 1:25.000).

In epoca più recente, 40-50 anni fa, proprio in prossimità della zona Ucciardone, il Canale è stato interrato e il suo percorso finale è stato deviato a Nord sino a sfociare in corrispondenza dell'Acquasanta.

Al fine di valutare, pertanto, l'estensione del bacino idrologico che raccoglie le acque in grado di interferire con le strutture di progetto, dopo avere ricostruito la linea di spartiacque che delimita il percorso originario del Canale Passo di Rigano, si è proceduto ad individuare la porzione di bacino di interesse progettuale, escludendo le aree i cui deflussi superficiali, comprensivi anche dei contributi derivanti dai sistemi di urbanizzazione di raccolta delle acque superficiali, confluiscono comunque nell'attuale porzione di foce del corso d'acqua.

In tal modo il bacino residuo è stato definito sottraendo tutta la porzione a monte del punto di deviazione del corso d'acqua dal percorso originario che comunque confluisce all'interno del canale deviato, sottraendo altresì tutta la porzione disposta a Nord dell'attuale canale

interrato che capta tutti i deflussi provenienti dal settore settentrionale del centro urbano, sino al rilievo di Monte Pellegrino.

Si è, quindi, presa in considerazione soltanto la porzione di superficie delimitata a Nord dall'attuale canale interrato ed a Sud dalla linea di spartiacque che caratterizza il bacino (vd. Carta allegata in scala 1:10.000).

Il bacino scolante, pertanto, si sviluppa con un percorso orientato prevalentemente in direzione SE-NW, dalla località Altarello di Baida sino alla trincea di progetto, per una estensione complessiva di 4,5 kmq.

Trattandosi di un bacino di modesta estensione, per la determinazione della portata di massima piena per assegnati tempi di ritorno, si è utilizzato il metodo analitico definito "metodo razionale", considerato affidabile per bacini di estensione non superiore a 50 kmq.

Secondo tale metodo la portata massima per assegnato tempo di ritorno è espressa dalla seguente formula:

$$Q_{\text{max}} = \frac{C h_{\tau_c, T} S}{3.6 tc}$$

in cui:

S: è la superficie del bacino, espressa in km²;

 $h_{\tau cT}$: è l'altezza critica della precipitazione di durata τ_c e tempo di ritorno T, espressa in mm;

C: è il coefficiente di deflusso che tiene conto della riduzione dell'afflusso meteorico per effetto delle caratteristiche di infiltrazione dei suoli ricadenti nel bacino e, nel caso specifico, delle opere di urbanizzazione che consentono la regimazione idraulica degli afflussi meteorici;

3.6: è un fattore di conversione delle unità di misura che consente di ottenere la Q_{max} (portata di piena) in m^3s^{-1} .

Al fine di potere procedere al calcolo della formula suddetta occorre innanzi tutto definire il tempo di corrivazione, vale a dire il tempo che occorre affinché dall'inizio di un fenomeno meteorico, avvenga la massima piena alla sezione considerata.

Il tempo di corrivazione $\tau_{\rm c}$ è stato valutato con formula di Kirpich, valida per piccoli bacini:

$$\tau_{\rm c} = 0.01947 \frac{L^{0.77}}{i^{0.385}}$$
 (min)

in cui

L è il massimo percorso idraulico (m)

i è la pendenza media del percorso calcolata facendo il rapporto tra il dislivello d tra le quote estreme del percorso ed il percorso stesso.

Tenuto conto che nel caso in esame:

- ✓ L = 4.500 m
- ✓ Quota massima percorso idraulico qmax = 95 m
- ✓ Quota minima percorso idraulico qmin = 0 m
- ✓ d = qmax-qmin = 95 m

Il valore del tempo di corrivazione del bacino in esame risulta

$$\tau_{\rm c}$$
 = 55,8 min.

La pioggia di massima intensità, $h_{\tau_c,T}$, è stata determinata a partire dalle curve di probabilità pluviometrica, tracciate ipotizzando che la distribuzione delle altezze di pioggia di massima intensità e brevi durate segua la legge di Gumbel.

La stazione pluviometrica, utilizzata per le elaborazioni idrologiche, è la stazione Palermo – Piazza Verdi (19 m s.l.m.) - Anno di inizio delle osservazioni 1921.

La stazione risulta ubicata immediatamente al margine meridionale della linea di spartiacque.

Nell'ambito del bacino ricade anche la stazione pluviometrica Palermo – Villa Trabia, funzionante dal 1975 ma con numerose lacune di registrazione.

Proprio per effetto della differenza fra la quantità dei dati disponibili si è preferito fare riferimento ai dati della stazione di Piazza Verdi.

Nella tabella seguente sono elencati i dati di precipitazione di massima intensità e durata di 1, 3, 6, 12 e 24 ore riportati sugli annali idrologici con riferimento a 49 anni di osservazione nel periodo compreso fra il 1924 ed il 2000.

Nella stessa tabella sono riportati i parametri statistici da utilizzare per i successivi calcoli:

- ✓ valore medio "M"
- ✓ scarto quadratico medio "s"
- ✓ coefficiente di variazione "CV".

	Precij	oitazioi	ni massi	me	
Anno	1 ora	3 ore	6 ore	12 ore	24 ore
1924	106,4	107,9	118,9	118,9	119,7
1925	154,9	154,9	155,1	155,1	155,1
1926	78,8	113,8	161,4	176,8	192,8
1927	29,6	46,1	46,1	46,1	48,6
1928	47,3	61,2	87,4	91,3	91,3
1929	48,8	79,5	81,9	81,9	89,5
1930	58,5	60,5	82,8	83,4	106,7
1931	306,5	353	349,5	408,8	422,3
1932	84	138,1	145,9	150,1	155,6
1936	85,8	93,8	104,8	106	106
1944	13,8	17,6	23,6	43	48,8
1949	34,2	41,2	45,4	52,8	65
1951	76,2	101,8	128,2	129,6	129,8
1952	68,4	68,6	69,6	69,8	70,4
1953	99,8	107,8	107,8	107,8	107,8
1954	67	85,4	101,2	103,6	106,2
1957	45,6	64,5	64,8	64,8	64,8

1958	16	28,8	41,6	53,2	84
1959	22,6	22,6	22,6	24,4	26,2
1963	26,4	28	28	34,8	44,8
1964	27,2	40,7	59,6	59,6	59,6
1965	24,2	26,4	41,4	42,2	47,2
1966	17,6	26,4	41,2	46	48,6
1967	56,4	68	69	69	69
1968	33,4	35,6	36	39,8	44,4
1972	23,8	37,8	66,4	75,2	81
1973	27,4	56,4	91,6	104,4	115
1974	18,8	21,4	28,2	30,6	31
1976	45,4	45,6	45,6	60	80,6
1977	12,4	14,6	18,2	22,6	25,6
1978	16,4	27,2	39,8	39,8	56,8
1980	20,8	22,6	27,2	31	36,2
1981	19,2	37,4	58,8	70	74,4
1982	26,6	28,8	28,8	33	44,6
1983	31,4	47,6	69,4	73,8	78,8
1984	14,2	40,2	44,6	48,6	56,2
1985	50,4	84,6	94	96	98,4
1986	32,2	33,6	33,8	35	35
1987	38,4	52,4	63,6	68,6	77,2
1988	88,6	108	115	120,2	120,2
1989	15,2	23,4	23,4	28,6	36,2
1990	22,6	22,6	28,6	32,4	39,8
1991	18,8	20,2	31,4	58,4	80,2
1992	24,8	43,8	55,6	69,4	69,8
1993	21,4	28,8	46,4	63,8	80,4
1994	25,8	33,2	49,2	69,6	74,2
1996	24,4	38,4	49	64,2	79,6
1997	34,8	55,2	73,6	87,8	88
2000	21,8	32	45,4	46,2	48,4

Media M	47,04	59,76	70,23	77,31	83,91
Scarto Quadra- tico medio s	48,09	54,29	54,56	60,11	60,86
Coefficiente di variazione CV	1,02	0,91	0,78	0,78	0,73

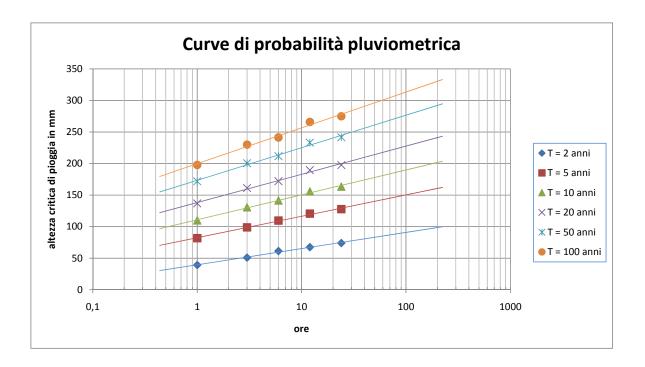
I parametri caratteristici di tale distribuzione "K" e " μ " sono dati dalle seguenti espressioni:

$$K = 1,283/s$$

 $\mu = M-0,5772/K$

		1 ora	3 ore	6 ore	12 ore	24 ore
K	-	0,027	0,024	0,024	0,021	0,021
μ		25,41	35,33	45,69	50,26	56,54

Riepilogando, quindi, i parametri della legge di Gumbel sono i seguenti


t (ore)	1	3	6	12	24
M	47,04	59,76	70,23	77,31	83,91
S	48,09	54,29	54,56	60,11	60,86
K	0,027	0,024	0,024	0,021	0,021
μ	25,41	35,33	45,69	50,26	56,54

I valori delle altezze di pioggia massima " h_{max} ", per ciascuna coppia durata-tempo di ritorno, sono dati dalla seguente espressione:

$$h_{max} = \mu - K^{-1} ln ln(T/(T-1))$$

per effetto della quale le altezze di pioggia massima con riferimento ai tempi di ritorno di 2, 5, 10, 20, 50 e 100 anni sono le seguenti:

T/t	1	3	6	12	24
T = 2 anni	39,144	50,841	61,274	67,435	73,921
T = 5 anni	81,628	98,797	109,469	120,536	127,682
T = 10 anni	109,756	130,549	141,379	155,694	163,276
T = 20 anni	136,737	161,005	171,987	189,418	197,419
T = 50 anni	171,661	200,428	211,607	233,070	241,613
T = 100 anni	197,832	229,970	241,296	265,781	274,731

Essendo il tempo di corrivazione inferiore a 1 ora, utilizzando la pioggia di massima intensità di durata 1 ora, si è pervenuti alla determinazione della massima pioggia di durata pari al tempo di corrivazione del bacino (55,8 minuti) applicando la formula di Ferro-Ferreri:

$$h_{tc} = h_{1ora} \times \left(\frac{\tau_c}{60}\right)^{0.385}$$

attraverso la quale sono state ricavate le piogge di intensità massima riferite al tempo di corrivazione, in relazione ai vari tempi ritorno:

T/t	htc
T = 2 anni	38,091
T = 5 anni	79,433
T = 10 anni	106,805
T = 20 anni	133,060
T = 50 anni	167,045
T = 100 anni	192,513

Pertanto, utilizzando i dati complessivi relativi alle caratteristiche del bacino ed alle altezze di pioggia critica è stata calcolata la portata massima per i vari tempi di ritorno. A tal proposito occorre precisare che la valutazione del Coefficiente di deflusso è stata eseguita tenendo conto dei particolari fattori che caratterizzano il bacino: infatti, l'area di deflusso è praticamente interamente antropizzata e pertanto quasi del tutto impermeabilizzata.

Ciò nonostante, bisogna tenere in debita considerazione che all'impermeabilizzazione delle superfici si contrappone l'azione di raccolta esercitata delle opere di urbanizzazione esistenti che di fatto riescono a captare buona parte dei deflussi superficiali. A conferma di ciò si evidenzia che il Piano Stralcio di Bacino per l'Assetto Idrogeologico relativo all'area in questione (Bacino Fiume Oreto ed aree territoriali adiacenti adottato con Decreto Presidente Regione Sicilia del 27 marzo 2007 e pubblicato sulla G.U.R.S. n. 26 del 08.06. 2007), contrariamente ad altre zone della Città di Palermo, non evidenzia alcun fenomeno di pericolosità idraulica nell'area in studio.

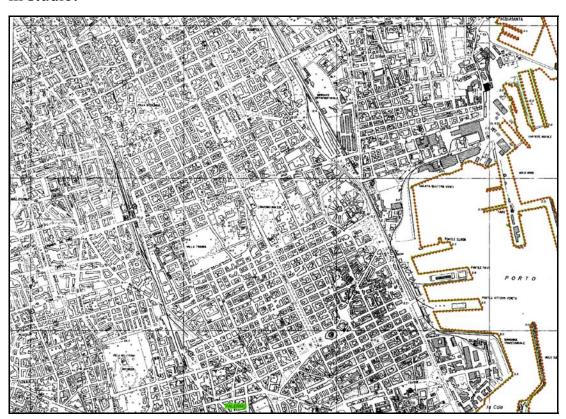


Fig. 01 – Stralcio della Carta della Pericolosità Idraulica del PAI vigente (Bacino F. Oreto ed Aree territoriali adiacenti)

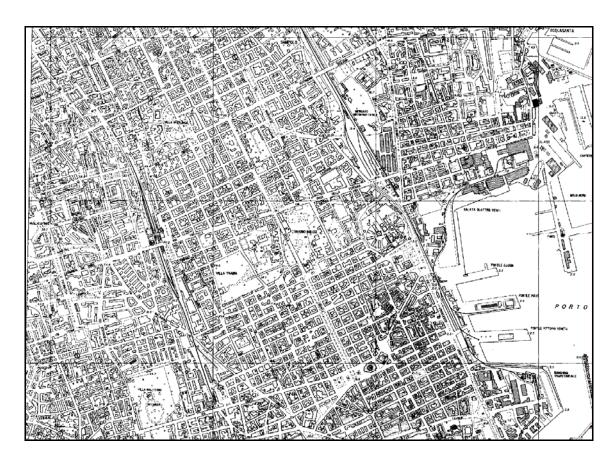


Fig. 02 – Stralcio della Carta del Rischio Idraulico del PAI vigente (Bacino F. Oreto ed Aree territoriali adiacenti)

Bilanciando, quindi, la natura impermeabile del suolo e l'efficacia delle urbanizzazioni primarie si è ritenuto significativo considerare un coefficiente di deflusso in condizioni di precipitazioni critiche dell'ordine del 50% degli afflussi.

Allora, considerando

- ➤ S, superficie del bacino, espressa in km² pari a 4,5
- $\succ \tau$ c, tempo di corrivazione pari a 55,8 min
- C, coefficiente di deflusso pari a 0,5

Attraverso la formula razionale ne derivano i seguenti valori di portata critica.

$$Q_{\text{max}} = \frac{C h_{\tau_c, T} S}{3,6tc}$$

T	2	5	10	20	50	100	anni
h _{tc} /tc	40,89	85,26	114,64	142,82	179,30	206,64	mm h ⁻¹
Qmax	25,27	52,70	70,85	88,27	110,82	127,71	mc/sec

11. CARATTERISTICHE FISICO-MECCANICHE DEI TERRENI

Da quanto desumibile dalle indagini geognostiche e geotecniche in situ ed in laboratorio eseguite, i terreni che costituisco il sottosuolo dell'area direttamente interessata dal progetto sono riferibili alle seguenti formazioni geologiche descritte dal più recente al più antico: a) Terreno di riporto; b) Depositi eluviali (terre rosse); c) Depositi alluvionali recenti; d) Complesso calcarenitico-sabbioso pleistocenico; e) Complesso limo-sabbioso pliocenico; f) Flysch Numidico.

Ne descriviamo singolarmente le caratteristiche litologiche e meccaniche così come desumibili dai dati ricavati durante le prove geognostiche, geofisiche e geotecniche in laboratorio ed in situ, nonché dalle pubblicazioni scientifiche e dall'esperienza maturata su questi terreni e dalle sperimentazioni scientifiche.

- a) TERRENO DI RIPORTO: si tratta di depositi molto eterogenei, prevalentemente sabbiosi e sabbio-limosi, poco addensati e poco consistenti con inclusi sfabbricidi ed elementi lapidei di natura calcarea e quarzitica da centimetrici a decimetrici. Lo spessore varia sino ad un massimo di 5 mt. Per quanto riguarda le caratteristiche fisico-meccaniche di questi terreni la loro valutazione è stata fatta tramite prove geotecniche in situ (SPT, CPTU) e prove di laboratorio. Per i risultati ottenuti si rimanda alla tabella allegata ed ai certificati delle prove eseguite.
- b) TERRE ROSSE: si tratta di depositi lateritici ed eluviali dovuti all'alterazione in posto dei terreni calcareniti da parte delle acque meteoriche e selvagge. Sono granulometricamente riferibili alle argille ed ai limi con inclusi elementi più grossolani a spigoli vivi. Sono spesso ricchi in sostanza organica. Su questi terreni, visto il

- modesto spessore e la limitata estensione areale, non si sono prelevati campioni indisturbati da sottoporre a sperimentazione di laboratorio ma si tratta di terreni certamente poco consistenti e plastici.
- c) DEPOSITI ALLUVIONALI: Si tratta di depositi limosi e limosabbiosi molto plastici e poco consistenti, talora inconsistenti dovuti alla deposizione da parte delle correnti fluviali del Canale Passo di Rigano. Sono depositi molto recenti e di scarse o scarsissime caratteristiche fisico-meccaniche. Questa formazione è stata suddivisa in tre litotipi diversi: a) Sabbie limose; b) Limi verdastri; c) Limi nerastri. Questi ultimi due sono stati differenziati non solo per il diverso colore ma soprattutto perché i secondi sono ricchi in sostanza organica in decomposizione. Per quanto riguarda le caratteristiche fisico-meccaniche di questi terreni la loro valutazione è stata fatta tramite prove geotecniche in situ (SPT, CPTU) e prove di laboratorio. Per i risultati ottenuti si rimanda alla tabella allegata ed ai certificati delle prove eseguite.
- d) COMPLESSO CALCARENITICO-SABBIOSO: E' un deposito clastico che per le peculiari caratteristiche è riferibile ad un ambiente di mare basso con frequenti ma brevi periodi di emersione. Ciò è testimoniato dal fatto che la cementazione è particolarmente abbondante in alcuni orizzonti che coincidono con antichi affioramenti e che il cemento secondario è dovuto alla deposizione di sali calcarei dalle acque risalienti in ambiente subaereo (fenomeni di calicizzazione). In generale la composizione mineralogica è costituita prevalentemente da carbonati di calcio e magnesio e da minerali di quarzo. Quest'ultimo è presente soprattutto nella frazione più fina. La omogenea distribuzione del cemento conferisce alla

roccia un aspetto caratteristico dovuto alla presenza di una struttura vacuolare piuttosto cementata con i vacuoli riempiti da sabbie mediamente cementate. Le indagini in nostro possesso hanno messo in evidenza che tale complesso è costituito da: *a) Calcareniti cementate, b) Calcareniti tenere; c) Sabbie; d) Sabbie grossolane e ghiaie; e) Sabbie fini e sabbie fini limose.* Per quanto riguarda le caratteristiche fisico-meccaniche di questi terreni la loro valutazione è stata fatta tramite prove geotecniche in situ (SPT) e prove di laboratorio. Per i risultati ottenuti si rimanda alla tabella allegata ed ai certificati delle prove eseguite.

- e) COMPLESSO LIMO-SABBIOSO PLIOCENICO: si tratta di un deposito di mare profondo che tende a passare ad una facies di mare basso con frequenti passaggi laterali e verticali tra limi, limi sabbiosi e sabbie con elevato contenuto in fossili. Sono generalmente poco consistenti o inconsistenti di colore grigio-azzurro con locali livelli calcarenitici cementati. Abbiamo suddiviso tale formazione in due litotipi: a) Limi sabbiosi; b) Sabbie e sabbie limose. Per quanto riguarda le caratteristiche fisico-meccaniche di questi terreni la loro valutazione è stata fatta tramite prove geotecniche in situ (SPT) e prove di laboratorio. Per i risultati ottenuti si rimanda alla tabella allegata ed ai certificati delle prove eseguite.
- f) FLYSCH NUMIDICO: si tratta di argille siltose, generalmente brune o color tabacco, ricche in ossidi di ferro, con intercalazioni di lenti quarzarenitiche e livelli sabbiosi costituiti anch'essi prevalentemente da quarzo. Localmente si individuano rari livelli calcarei. Mineralogicamente sono costituite da fillosilicati quali clorite, caolinite, montmorillonite ed illite; inoltre sono presenti minerali di ferro quale siderite e pirite. La struttura si presenta scagliettata e

caotica, con scaglie millimetriche, talora lucide per effetti di striature, legate agli stress tettonici che si sono avvicendati nel corso degli eventi geologici. La stratificazione è assente, distinguibile raramente in presenza dei livelli quarzarenitici. Abbiamo suddiviso questa formazione in quattro litotipi diversi: a) Argille alterate; b) Argille inalterate; c) Quarzarenite; d) Sabbie con intercalati livelli quarzarenitici. Per quanto riguarda le caratteristiche fisicomeccaniche di questi terreni la loro valutazione è stata fatta tramite prove geotecniche in situ (SPT) e prove di laboratorio. Per i risultati ottenuti si rimanda alla tabella allegata ed ai certificati delle prove eseguite. Per quanto riguarda la quarzarenite oltre le prove di schiacciamento è stato eseguito il calcolo dell'RQD da cui si evince che la roccia rientra tra quelle definite "Buone" (vedi elaborati allegati).

Carota da 17,10 mt a 24,00 mt (6,90 mt)

$$RQD = \frac{\sum_{per} l \gg 10}{tot \, carota} * 100$$

$$RQD = \frac{12 + 33 + 17 + 43 + 34 + 22 + 32 + 23 + 22 + 43 + 14 + 12 + 15 + 9 + 14 + 13 + 21}{690} * 100$$

$$RQD = \frac{379}{690} * 100 = 54,9\% \cong 55\%$$

RMR - Bieniawski, 1976, 1989

				10.110	4.40.45	0 1 1 1 5	4.0.145	0.	• CONTROL • CONTROL	on a market may prove
1	Resister roccia	nza	Indice Point load s.	>10 MPa	4-10 MPa	2-4 MPa	1-2 MPa	a co	isce la res ompressic onoassial	one
	intatta		Compressione monoassiale	>250 MPa	100-250 MPa	50-100 MPa	25-50 MPa	5-25 MPa	1-5 MPa	<1 MPa
			Indice	15	(12)	7	4	2	1	0
2	RQD Indice			90-100%	75-90%	50-75%	25-50%	<25%		
			Indice	20	17	13	8	3		
3	Spaziatura discontinuità Indice		> 2m	0.6 – 2 m	200-600 mm	60-200 mm	n < 60 mm			
3			20	15	10	8	5			
4	Discont	Condizioni delle Discontinuità vedi TAB. E)		Superfici molto rugose Discontinue Serrate Roccia inalterata	Superfici debolmente rugose Apertura < 1 mm Debolmente alterate	Superfici debolmente rugose Apertura < 1 mm Molto alterate	Superfici striate o gouge < 5 mm o Apertura 1-5 mm Continue		soffice > 5 ertura > 5m Continue	
			Indice	30	25	20	10		0	
		Venuta per 1.0 m di lunghezza tunnel (l/m)		0	<10	10-25	25-125		>125	
5	Acqua		sione acqua nei ti / sforzo princ.	0	< 0.1	0.1-0.2	0.2-0.5		>0.5	
		Cond	dizioni generali	asciutto	umido	bagnato	stillicidio		Flusso	
			Indice	(15)	10	7	4		0	

RMR - Bieniawski, 1976, 1989

B. AGGIUSTAMENTO DEI PARAMETRI PER TENERE CONTO DELL'ORIENTAZIONE							
Direzione e inclinazione		Molto favorevole	Favorevole	Intermedia	Sfavorevole	Molto sfavorevole	
	Tunnel e cunicoli	0	-2	-5	-10	-12	
Indice	Fondazioni	0	-2	-7	-15	-25	
	Pendii	0	-5	-25	-50		

C. CLASSIFICAZIONE DELLA ROCCIA								
Indice Totale	100←81	80←61	60←41	40←21	<21			
Classe	İ	II	III	IV	٧			
Descrizione	Roccia molto buona	Roccia buona	Roccia media	Roccia cattiva	Roccia pessima			

D. SIGNIFICATO DELLE CLASSI							
Classe	1	II	Ш	IV	V		
Tempo di autosostentamento	20 aa per cavo da 15 m	1 a per cavo da 10 m	7 gg per cavo da 5 m	10 h per cavo da 2.5 m	30 min per cavo da 1 m		
Coesione ammasso roccioso (kPa)	> 400	300-400	200-300	100-200	< 100		
Angolo attrito interno (°)	> 45	35-45	25-35	15-25	< 15		

RMR - Bieniawski, 1976, 1989

E. LINEE GUIDA PER LA CLASSIFICAZIONE DELLE DISCONTINUTA' (TAB. A4)							
1	Persistenza	< 1 m	1-3 m	3-10 m	10-20 m	>20 m	
110	Indice	6	4	2	1	0	
_	Apertura	0	< 0.1 mm	0.1 – 1.0 mm	1-5 mm	>5 mm	
2	Indice	6	5	4	1	0	
3	Rugosità	Molto rugosa	Rugosa	Debolmente rugosa	Liscia	Striata	
3	Indice	6	(5)	3	1	0	
4	Riempimento	Assente	Duro < 5 mm	Duro > 5 mm	Soffice < 5 mm	Soffice > 5 mm	
4	Indice	6	4	2	2	0	
5	Alterazione	Inalterato	Deb. Alterato	Moderat. Alterato	Fortem. Alterato	Decomposto	
5	Indice	(6)	5	3	1	0	

Tipo litologico	Sondaggio	Campione	SPT N° di colpi (Profondità)	φ' (gradi)	c' (kN/m ²)	γ (kN/m³)	Cu (kN/m²)	$\sigma_{ m rott.}$ (kN/m ²)
Terreno di riporto	SE06		7 - 3 - 3 (3,5÷3,95)					
			•	•			•	
Depositi alluvionali	SE04	C1				17,04		
(Sabbie limose)	SE04	C2		34	6,54	16,17		
			•	•			•	
	SE04		4 - 3 - 3 (3,9÷4,35) 2 - 3 - 2 (7,0÷7,45)					
Depositi alluvionali	SE04	C3		27	2,83	16,66		
(Limi verdastri)	SE04		4 - 3 - 3 (12,1÷12,55)					
	SE04	C4		21	16,5	16,66	49,33	
Depositi alluvionali	SE04	C5		26	7	16,8		
(Limi nerastri)	SE04		4 - 3 - 4 (16÷16,45)					
	SE02	CL1				20,56		10020
	SE02	CL2				16,75		7819
	SE02	CL3				15,69		4759
Calcarenite cementata	SE03	CL1						1490
	SE03	CL3						3844
	SE03		50 - R - (15,35÷15,50)					
	SE05	CL1						4843

	SE03	CL2					936
	SE03		37 - 50 - R (4,3÷4,52)				
	SE03		9 - 31 - 37 (8÷18,45)				
Calcarenite tenera	SE06		R (14,45÷14,6)				
Calcarenne tenera	SE06	C2		29	1,38	19,83	
	SE07	C1		29-30	4,49-18,00	18,75	
	CEO7		10 - 20 - 15 (11÷11,45)				
	SE07		35 - 12 - 17 (14÷14,45)				
	SE03		20 - 25 - 21 (9,0÷9,45)				
	SEUS		7 - 6 - 10 (11,3÷11,75)				
			16 - 32 - 21(5,2÷5,65)				
Sabbia	SEO5		3 - 4 - 8 (9÷9,45)				
	SE05		10 - 12 - 9 (11÷11,45)				
			8 - 10 - 12 (14÷14,45)				
	SE05 bis		6 - 10 - 9 (4÷4,45)				
			20 - 14 - 8 (17÷17,45)				
	SE05		9 - 12 - 10 (20÷20,45)				
	SE05 bis		12 - 15 - 19 (8÷8,45)				
	SE05 bis		12 - 15 - 19 (8÷8,45) 6 - 13 - 9 (12,5÷12,95)				
		C1		36	1,5	18,14	
Sabbia fine	SE05 bis	C1 C3		36 33	1,5 7,36	18,14 18,26	
Sabbia fine	SE05 bis SE06					-	
Sabbia fine	SE05 bis SE06 SE06	C3		33	7,36	18,26	
Sabbia fine	SE05 bis SE06 SE06 SE06	C3 C4		33 32-36	7,36 2,71-4	18,26 19,03	
Sabbia fine	SE05 bis SE06 SE06 SE06 SE06	C3 C4	6 - 13 - 9 (12,5÷12,95)	33 32-36	7,36 2,71-4	18,26 19,03	
Sabbia fine	SE05 bis SE06 SE06 SE06 SE06 SE06	C3 C4	6 - 13 - 9 (12,5÷12,95) 8 - 4 - 5 (8,5÷8,95)	33 32-36	7,36 2,71-4	18,26 19,03	
Sabbia fine	SE05 bis SE06 SE06 SE06 SE06 SE06 SE06	C3 C4	6 - 13 - 9 (12,5÷12,95) 8 - 4 - 5 (8,5÷8,95) 6 - 3 - 9 (11÷11,45)	33 32-36	7,36 2,71-4	18,26 19,03	

	SE06		9 - 14 - 19 (26,5÷26,95) 11 - 17 - 22 (30,10÷30,55)					
Limi sabbiosi (Pliocene)	SE06	C6	22 (6 6,10 16 6,66)	30-32	10,29-15	19,59		
	SE12	C2		32	12,6	20,05		
							•	
	SE07		31 - 50 - R (17÷17,22)					
Argille alterate F.N.	SE09	C1		24	55	20,1		
	SE09		16 - 25 - 38 (5,3÷5,75)					
	SE11	C1		26	48,57	20,19		
Quarzareniti	SE08	C1						15267
Quarzareniu	SE08		R - (17,5÷17,54)					
	SE09	C2		24	21,05	19,53		
	SE09	C3		25	31,95	18,91		
	SE09	C4		27	35,85	20,56		
	SE09		21 - 37 - 50 (8,6÷9) 3 - 4 - 8 (9÷9,45) 10 - 12 - 9 (11÷11,45)					
A THE LOCK TON	SE10	C1		29	13,6	21,38	325,22	
Argille inalterate F.N.	SE10	C2		29	18,51	19,89	279,26	
	SE11	CR1				23,89		7645
	SE11	CR2				24,2		4814
	SE11	C2				24,99		8822
	SE11 bis	C1		27	24,1	20,03		
	SE11 bis	C2				19,92		
	SE11 bis	C3				24,76		2592

12. CARATTERISTICHE SISMICHE DEL TERRITORIO

Il territorio interessato è incluso nell'elenco delle località sismiche di IIa categoria, a cui si attribuisce un grado di sismicità S=9, allegato alla legge 25.11.1962 n. 1684 e successive modificazioni (Decreto Ministero dei Lavori Pubblici 23.09.1981 n. 666) concernente "Aggiornamento delle zone sismiche della Regione Sicilia", pubblicato sulla G.U.R.I. n. 314 del 14 novembre 1981 e rettificato ai sensi del Decreto Ministeriale 27 luglio 1982, pubblicato sulla G.U.R.I. del 16.08.1982, n. 224 e confermato dalla Ordinanza del Presidente del Consiglio dei Ministri n.3274 del 20/03/03 e dal D.M. 14/08.

Esiste nella letteratura scientifica (Baratta 1934, De Panfilis 1959, Cosentino, Mulone 1985, Barberi 1985) tutta una serie di notizie relative ad eventi sismici che hanno avuto i loro epicentri in zone vicine all'area in oggetto o che si sono risentite nell'abitato di Palermo.

Le prime notizie di eventi che in qualche maniera si sono avvertite nella zona risalgono al 1593 e ricordano un terremoto con epicentro Corleone, successivamente altre notizie riportano di terremoti nel 1724 e 1740.

Nel 1816-17 una serie di scosse sismiche con epicentro a Sciacca, Menfi e Sambuca di Sicilia sono state avvertite anche a Palermo.

Nel 1897 una nuova scossa sismica interessa Corleone, nel dicembre del 1909 una forte scossa con intensità pari al VII° grado si verificò con epicentro nella zona di Camporeale.

Un'intensa attività sismica si è verificata tra il 18 ed il 20 novembre 1954, con area epicentrale localizzata nei pressi dell'abitato di Grisì; la scossa principale, di intensità valutata del VI° grado della scala Mercalli, fu registrata negli osservatori di Palermo e Messina; successivamente nel

1956 un movimento sismico a carattere locale ha interessato nuovamente il territorio di Grisì

Nel 1968 si è registrato il terremoto più importante della zona risentito a Palermo con intensità pari al VI°. In quella occasione una vasta area situata a cavallo della Valle del Belice fu interessata da una serie di forti scosse sismiche che provocarono gravissimi danni e vittime negli abitati di Gibellina, Salaparuta, Montevago, Poggioreale, S.Margherita Belice, Salemi, Partanna, Menfi, mentre danni minori, ma sempre notevoli, si ebbero a Palermo.

Da allora numerose scosse di lieve entità sono state registrate e tutte legate ai terremoti che hanno coinvolto l'area del palermitano, sino a quello più forte del 06/09/02 che è stato avvertito dalla popolazione ed ha causato parecchi danni a monumenti ed edifici ubicati in particolari aree del centro abitato.

Dagli studi di questo recente evento sismico e dalla zonizzazione dei danni si evince con chiarezza che i manufatti che hanno subito danni sono tutti ubicati nelle zone alluvionali e/o palustri, ora riempite, dove evidentemente la presenza di terreni a scarsa o scarsissima consistenza ha creato fenomeni di consolidamento a seguito delle sollecitazioni sismiche.

Dove il terreno di sedime era costituito dal complesso calcarenitico non vi sono stati danni se non a quei manufatti che dimostravano una evidente carenza costruttiva.

In questo quadro trova conferma la classificazione sismica dell'area e la necessità di studiare, nei siti interessati da edificazione, le eventuali modificazioni che dovessero subire le sollecitazioni sismiche ad opera dei fattori morfologici, strutturali e litologici.

Tali studi, eseguiti anche in Italia nelle zone dell'Irpinia, del Friuli, dell'Umbria e più recentemente di Palermo e del Molise, hanno evidenziato

notevoli differenze di effetti da zona a zona nell'ambito di brevi distanze, associate a differenti morfologie dei siti o a differenti situazioni geologiche e geotecniche dei terreni.

In tal senso sembra opportuno soffermarsi su alcuni aspetti di carattere generale riguardanti la tematica in oggetto, utili all'inquadramento del "problema sismico".

La propagazione delle onde sismiche verso la superficie è influenzata dalla deformabilità dei terreni attraversati. Per tale ragione gli accelerogrammi registrati sui terreni di superficie possono differire notevolmente da quelli registrati al tetto della formazione di base, convenzionalmente definita come substrato nel quale le onde di taglio, che rappresentano la principale causa di trasmissione degli effetti delle azioni sismiche verso la superficie, si propagano con velocità maggiori o uguali a 1.000 m/sec.

Si può osservare in generale che nel caso in cui la "formazione di base" sia ricoperta da materiali poco deformabili e approssimativamente omogenei (es. calcari e calcareniti) gli accelerogrammi che si registrano al tetto della formazione di base non differiscono notevolmente da quelli registrati in superficie: inoltre in tale caso lo spessore dei terreni superficiali non influenza significativamente la risposta dinamica locale.

Nel caso in cui la formazione di base è ricoperta da materiali deformabili, gli accelerogrammi registrati sulla formazione ed in superficie possono differire notevolmente, in particolare le caratteristiche delle onde sismiche vengono modificate in misura maggiore all'aumentare della deformabilità dei terreni.

La trasmissione di energia dal bed-rock verso la superficie subisce trasformazioni tanto più accentuate quanto più deformabili sono i terreni attraversati; all'aumentare della deformabilità alle alte frequenze di propagazione corrispondono livelli di energia più bassi e viceversa a frequenze più basse corrispondono livelli di energia più alti.

Il valore del periodo corrispondente alla massima accelerazione cresce quanto la rigidezza dei terreni diminuisce; nel caso di rocce sciolte tale valore aumenta anche all'aumentare della potenza dello strato di terreno.

Di particolare importanza è, inoltre, lo studio dei contatti stratigrafici in affioramento soprattutto tra terreni a risposta sismica differenziata.

Nel particolare della risposta sismica locale, lo studio eseguito con il necessario dettaglio in relazione ai parametri proposti dalla circolare 2222/95 dell'Assessorato Territorio ed Ambiente ci permette di escludere, nel sito interessato dalla realizzazione delle opere, "la presenza di terreni soggetti a fenomeni di liquefazione" anche se le prove CPTU eseguite in corrispondenza dei depositi alluvionali evidenziano ad una certa profondità la presenza di terreni caratterizzati da fenomeni di attrito negativo e di classificare i terreni presenti come riferibili alle categorie di suolo di cui alla tabella allegata.

Tabella riepilogativa velocità Vs dei singoli litotipi								
Terreno di riporto	Vs < 180 m/sec							
DEPOSITI ATTUALI								
Alluvioni sabbio-limose	Vs 270-290 m/sec							
Alluvioni limose	Vs <180 m/sec							
DEPOSITI PLEISTOCENICI								
Sabbie fini limose	Vs 350-370 m/sec							
Calcareniti tenere	Vs 420-440 m/sec							
Calcareniti cementate	Vs 570-700 m/sec							
Sabbie	Vs 370-390 m/sec							
DEPOSITI PLIOCENICI								
Limi sabbiosi e sabbie limose	Vs 280-300 m/sec							
FLYSCH NUMIDICO								
Flysch argilloso alterato	Vs 280-330 m/sec							
Flysch argilloso inalterato	Vs 330-520 m/sec							
Quarzareniti	Vs 1150-1200 m/sec							

13. <u>CONSIDERAZIONI GEOLOGICHE SULLE SCELTE PROGET-</u> TUALI, PROPOSTE DI OTTIMIZZAZIONE E CONCLUSIONI

Da quanto detto precedentemente in ordine alle caratteristiche geologiche, geomorfologiche, idrogeologiche e tecniche del sito si evince che:

- ♣ la zona interessata, come quasi tutta la Piana di Palermo, è, da un punto di vista geologico, dominata dal "Complesso Calcareniticosabbioso", che nella sua generalità si presenta stratificato in banchi con giacitura lievemente inclinata verso l'attuale linea di costa;
- ♣ la giacitura della formazione calcarenitica è quella originaria e, quindi, il suo affioramento è dovuto ad "abbandono" del mare per il suo ritiro in seguito alla regressione. Ciò significa che essa non è stata interessata da fenomeni tettonici di sollevamento che abbiano potuto provocare la formazione di faglie;
- ♣ la successione litostratigrafica di questa formazione geologica, nell'area direttamente interessata dal progetto, è contraddistinta dalla presenza di:
 - a) Biocalcareniti a grana fine e media, da mediamente cementate a molto cementate, tessitura uniforme, in banchi e strati ben definiti (Stazione Libertà);
 - b) Biocalcareniti sabbiose, a grana medio fine uniforme, porose, a cementazione variabile (Zona Porto-Politeama);
 - c) Sabbie calcarenitiche gialle o bianche a grana uniforme medio-fine con inclusi noduli calcarenitici (Zona Porto-Politeama);
 - d) Sabbie grossolane e ghiaie (Zona Porto-Politeama);

- e) Sabbie limose e limi con noduli calcarenitici (Zona Porto-Politeama);
- ➡ il complesso calcarenitico-sabbioso riferibile al Pleistocene poggia in concordanza stratigrafica sul complesso limo-sabbioso del Pliocene costituito da limi sabbiosi grigi, poco consistenti o inconsistenti, ricchi in fossili con intercalati livelli sabbiosi poco addensati e strati calcarenitici cementati;
- ♣ in discordanza stratigrafica ed angolare, al di sotto dei terreni Plio-Pleistocenici, si trova la Fm. del Flysch Numidico che, a causa dei fenomeni tettonici legati al sovrascorrimento e successiva messa in posto dei Monti di Palermo, presenta un tetto fortemente ondulato tanto che in una porzione del tracciato, su Via E. Amari, affiora al di sotto di un modesto spessore di terreno di riporto;
- ♣ si tratta di una potente formazione, litologicamente costituita da un'alternanza di argille ed argilliti grigie e/o brune, quarzareniti e quarzosiltiti grigio-giallastre, nella quale si possono distinguere due diverse litofacies principali: quella arenacea e quella argillosa. La struttura si presenta scagliettata e caotica, con scaglie millimetriche, talora lucide per effetti di striature, legate agli stress tettonici che si sono avvicendati nel corso degli eventi geologici;
- ♣ le formazioni geologiche sopra citate sono ricoperte da strati di spessore variabile di terreni di riporto legati alla realizzazione della vasta area portuale e di alluvioni limose e limo-sabbiose legate alla deposizione del corso d'acqua Passo di Rigano, oggi completamente canalizzato;
- ♣ l'area è pianeggiante e stabile;
- ♣ non esistono agenti geodinamici che possano in futuro modificare l'attuale stato di equilibrio;

- ♣ il Piano Straordinario per il Rischio Idrogeologico redatto dall'A.R.T.A. nel 2005 esclude tale area da qualunque fenomenologia di dissesto e di rischio geomorfologico ed idraulico;
- ♣ il livello freatico è stato ricostruito nella carta idrogeologica ed è
 importante evidenziare che, nel tratto Trincea Ucciardone-Stazione
 Porto sia alla quota del livello del mare;
- ♣ il complesso permeabile costituito dal complesso calcareniticosabbioso, nel tratto di maggiore interferenza con le opere in progetto, presenta una permeabilità complessiva pari a K = 1*10⁻⁴ ed uno spessore variabile tra 40 e 50 metri;
- ♣ lungo il tratto di interesse progettuale rientrante all'interno del sito di attenzione per la presenza di cavità sotterranee le indagini geofisiche eseguite, con le cautele indicate nel capitolo specifico, ci permettono di affermare che non sono state rilevate anomalie riferibili alla presenza di vuoti nel sottosuolo;
- ♣ ai sensi della circolare 2222/95 dell'A.R.T.A. e del D.M.
 14/01/2008, i terreni presenti rientrano nelle tipologie sismiche di cui
 alla tabella allegata al capitolo specifico;
- ♣ non esistono pericolosità sismiche che possano ostare la realizzazione del progetto;
- ♣ per quanto attiene le opere civili si evidenziano alcune criticità emerse in sede di analisi del progetto, degli accertamenti e dei sopralluoghi eseguiti, con particolare riferimento al tratto urbano di via Amari dove sussistono le maggiori interferenze sia in termini di sottoservizi che interazione con gli edifici anche di valore storico;
- ♣ la presenza di edificazioni adiacenti agli scavi ha imposto un'analisi approfondita delle problematiche connesse alle fasi esecutive, ai

- provvedimenti protettivi degli scavi ed alla limitazione dei cedimenti in fase di esecuzione delle opere e gestione dei sottoservizi presenti;
- ♣ tale evenienza rende particolarmente difficile e rischiosa la realizzazione dei diaframmi così come previsti nel progetto definitivo in particolare per quanto riguarda l'entità dei cedimenti in fase di scavo, la stabilità delle pareti del foro prima del getto del calcestruzzo e le vibrazioni indotte dai macchinari (peraltro molto ingombranti) su edifici non sempre in perfetto stato di consistenza;
- ♣ gli interventi di consolidamento previsti a protezione degli edifici
 esistenti (paratie di micropali, disposti a cavalletto e collegati da
 cordolo in testa intervento tipo 1) e/o da iniezioni di malta
 cementizia a bassa pressione (intervento di tipo 2), risultano
 particolarmente critici considerata l'elevata eterogeneità dei terreni
 presenti e la conseguente forte differenziazione delle risposte agli
 interventi stessi;
- ♣ in queste condizioni non sarà possibile prevedere il comportamento
 puntuale del terreno di sedime degli edifici una volta sollecitato dalle
 opere di consolidamento previste dal progetto definitivo ma le uniche
 certezze sono costituite da: a) una notevole differenza di risposta tra i
 litotipi diversi anche a distanze molto vicine, b) l'incremento di
 vibrazioni in ambiti limitrofi agli edifici, c) modifiche differenziate
 dello stato tensionale sotto gli edifici alcuni dei quali in precario
 stato; d) probabile insorgenza di problemi ben più grossi degli effetti
 benefici ipotizzati;

e le fermate, un sistema tipo top-down con paratie realizzate con il metodo dei pali CSP ad elica con tubo protettivo, solettone di copertura di adeguato spessore e tappo di fondo con caratteristiche strutturali da eseguire con metodologia super jet di adeguato spessore;

- ♣ la galleria deve essere perfettamente impermeabilizzata;
- tale metodologia comporta, infatti, i seguenti indiscutibili benefici e vantaggi:
 - lo scavo con elica comporta effetti di vibrazioni per le preesistenze prossime alla trincea decisamente inferiori a quelle indotte dal sistema previsto nel progetto definitivo;
 - la realizzazione del foro con elica senza asportazione di terreno o con protezione di tubo metallico, non comporta l'allentamento del terreno e pertanto vengono esclusi rischi in fase esecutiva del foro;
 - si eliminano tutti gli inconvenienti legati alla gestione dei fanghi bentonici necessari per le fasi di scavo dei pannelli di paratia;
 - si riducono sensibilmente gli inconvenienti legati alla gestione degli scavi per lo spostamento dei sottoservizi;
- ♣ risulta ovvio che tale metodologia impone che il geotecnico ed il
 progettista prevedano tutte le opere necessarie affinchè il sistema
 top-down sia progettato in maniera da annullare qualunque possibile
 cedimento a monte delle paratie e/o qualunque rifluimento
 all'interno del cavo, che causerebbero fenomeni di rilassamento del
 terreno di sedime degli edifici vicini con evidenti danni agli stessi;
- dove non è presente la falda freatica ed i terreni interessati sono costituiti dalle argilliti del Flysch Numidico il solettone di fondo, difficilmente realizzabile per la scarsa permeabilità dei terreni, deve

- essere sostituito da un adeguato sistema di setti di pali secanti con funzione di contrasto;
- ♣ ulteriore criticità è data dalla previsione delle opere di interferenza la falda nel tracciato da realizzare nell'area portuale. L'andamento idrogeologico dell'area evidenzia, infatti, la presenza di un complesso permeabile ad elevata trasmissività di spessore medio non inferiore a 40 mt. Si ritiene, quindi, che l'interferenza con la falda sia tutto sommato limitata, considerata l'elevata trasmissività del complesso calcarenitico.sabbioso, il notevole spessore della falda ed il modesto gradiente idraulico. Di converso l'elevata trasmissività del complesso calcarenitico-sabbioso, con la realizzazione dei pozzi drenanti, così come progettati, imporrà coni di depressione della falda di limitata profondità ma con elevati diametri che, visto anche l'elevato numero di pozzi drenanti previsti, può innescare fenomeni di variazione dello stato tensionale al di sotto degli edifici vicini e di conseguenza l'insorgenza di dissesti nelle strutture. Si propone, quindi, come meglio specificato più avanti, una soluzione meno invasiva e più rispondente alla realtà idrogeologica del territorio;
- ♣ si consiglia, quindi, una soluzione alternativa a quella indicata in progetto definitivo che riteniamo più rispondente alle caratteristiche idrogeologiche del territorio prevedendo una trincea drenante di modesta profondità lato monte intervallata da pali in ghiaia ad interasse variabile 15/20 m messi in comunicazione idraulica col lato di valle attraverso tubazioni passanti al di sotto del solettone di fondo in corrispondenza dei pali in ghiaia. La trincea drenante è altresì in comunicazione con il lato di valle per il tramite di tubazioni disposte al livello del solettone alla quota di massima oscillazione della falda.

 Tale sistema garantisce una doppia funzionalità: le tubazioni al di

sotto forniscono la continuità del sistema idraulico mentre le comunicazioni superiori fungono da troppo pieno assorbendo le oscillazioni del livello del pelo libero della falda.