

COMUNE DI PALERMO AREA INFRASTRUTTURE E TERRITORIO

PROGETTISTA

ATI:

DOMINIQUE PERRAULT ARCHITECTE

(Capogruppo Mandataria)

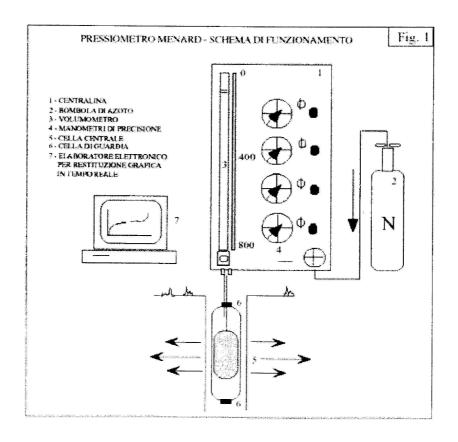
METROPOLITANA AUTOMATICA LEGGERA DELLA CITTA' DI PALERMO PRIMA LINEA TRATTA FUNZIONALE ORETO/NOTARBARTOLO

PROGETTO PRELIMINARE

RISULTATI DELLE PROVE PRESSIOMETRICHE

COMMESSA	FASE	COMPARTO	DOCUMENTO	REV	SCALA	NOME FILE
MPA1	PP	IND	INRS 04	0	-	-

							PROGETTIST
0	AGOSTO 2006	EMISSIONE ELABORATI OPERE CIVILI PER CONSEGNA FINALE	Calvi	Troia	Checchi/Di Nicola	Piscitelli	
REV.	DATA	DESCRIZIONE	REDATTÓ	CONTROLLATO	APPROVATO	AUTORIZZATO	


Premessa

A seguito dell'incarico avuto dalla Soil Geo s.r.l. con sede a Palermo in Via dei Quartieri 100, P.I. 04146560828 sono state eseguite n. 31 prove pressiometriche in foro da 66mm relative al progetto denominato: Realizzazione della Metropolitana Automatica Leggera della Città di Palermo. Prima linea – Oreto/Notarbartolo.

Descrizione dell'attrezzatura

Il pressiometro 'Menard' nasce in Francia alla metà degli anni '50 e da allora ha subito perfezionamenti e correlazioni con numerose prove geotecniche in sito ed in laboratorio.

Il sistema di prova è costituito da una centralina di misura, alimentata da gas azoto, dotata di manometri di precisione a bagno di glicerina (fondo scala 25 - 60 bar, risoluzione 0.25 bar) e di un volumometro a tubo graduato dotato di sistema di misura ad alta precisione con risoluzione di 0.1 cmc; le letture vengono fatte manualmente.

Descrizione della prova

Per ogni prova, in via preliminare, viene eseguita la taratura dell'attrezzatura nella configurazione scelta per i materiali investigati e la profondità prevista. Si esegue la taratura dell'inerzia della guaina, con espansione libera della stessa. Si verificano poi le deformazioni, con le conseguenti perdite di volume, dei tubicini di collegamento portando alla massima pressione la sonda all'interno di un tubo metallico considerato indeformabile. Durante l'acquisizione delle tarature (o contemporaneamente) si procede all'esecuzione del preforo, che non dovrà avere un diametro maggiore di 1,2 volte il diametro della sonda, e alla misura del livello della falda. In genere viene praticato un preforo di circa 66mm per una lunghezza di 1,2-1,5 m. Viene letto il volume di zero nel dispositivo di misura e la sonda viene quindi calata e posizionata con centro nel punto medio del preforo, che dovrà coincidere con la profondità di progetto. Per profondità della prova si intende la profondità del centro della sonda rispetto al piano di campagna. Si procede quindi all'esecuzione vera e propria della prova.

Dopo aver impostato la pressione differenziale apparente(letta al manometro) tra cella di misura e celle di guardia, si inizia ad incrementare la pressione nella sonda secondo gradini regolari, che potranno essere adattati allo svolgersi della stessa prova. Si eseguiranno almeno 7-10 incrementi. Raggiunta la fase plastica o la massima pressione sostenibile dall'apparato si procederà allo sgonfiamento della sonda ed al recupero della stessa. I dati ottenuti saranno corretti considerando l'inerzia della guaina, la deformazione dei tubicini, l'effetto della pressione idrostatica dei tubicini e l'effetto della falda.

Le letture di pressione e volume vengono eseguite a 30 e 60 secondi dall'incremento di carico. Riportando in un grafico i valori di V₆₀ in ascisse e la pressione **P** in ordinate, si possono distinguere 3 fasi:

fase iniziale, in cui si hanno grandi variazioni di volume per piccoli incrementi di pressione: in questa fase l'espansione della guaina compensa la differenza di volume fra sonda e foro e causa successivamente la ricompressione del terreno disturbato;

fase elastica, nella quale si ha un notevole incremento della pendenza del diagramma; fase plastica, nella quale aumenta la variazione di volume corrispondente ad ogni incremento di pressione.

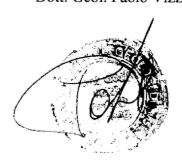
L'osservazione dell'andamento qualitativo della curva pressiometrica evidenzia eventuali anomalie nella preparazione e/o conduzione della prova. Sulla curva pressione-volume si individuano i punti di maggior curvatura che identificano il passaggio dalla fase iniziale alla fase elastica e dalla fase elastica alla fase plastica. In base alla collocazione dei medesimi è possibile stimare le caratteristiche meccaniche del materiale indagato.

Prove eseguite

Le prove sono state condotte dal Dott. Geol. Paolo Vizzì, regolarmente iscritto all'Ordine Regionale dei Geologi di Sicilia al n. 1833, dal 09/05/2006 al 26/07/2006 durante l'esecuzione dei sondaggi geognostici. Il preforo, quando possibile, è stato eseguito a secco con carotiere semplice da 66mm. Per tutta la campagna si sono utilizzate guaine telaterinforzate sottoposte, prima dell'utilizzo, a cinque cicli di carico-scarico.

I gradini di pressione sono stati dati secondo l'andamento della singola prova in modo da adattarsi al comportamento del materiale indagato

Le prove sono state eseguite a diversa profondità e su diversi sondaggi secondo la tabella allegata:


Sondaggio	S1B20	S1B19	S1B28	S1B29	S1B40	S1B41	S1B42	S1B43	S1B44	S2 56	S2 58	S2 62
Prof. Prova m	11,5	13,5	12,0	9,0	12,5	7,0	14,0	10,2	5,5	6,5	7,4	22,0
	T										J	
Sondaggio	S2 66	S2 84	S2 86	S2 87	S1B48	S1B30	S1B45	S1B46	S1B47	S1B49	S1B50	S1B51
Prof. Prova m	3,5	6,2	9,2	12,0	23,0	5,0	5,0	15,0	10,0	10,0	12,0	15,0
								<u> </u>	L			
Sondaggio	S2 67	S2 68	S2 83	S2 88	S2 89	S1 A1	S2 65		,			
Prof. Prova m	10,0	21,0	4,5	4,5	9,0	9,0	7,0					

Tutte le prove, ad eccezione della S1A1 per la quale si sono evidenziate delle anomalie, hanno dato risultati soddisfacenti.

Raffadali 26/07/2006

Il tecnico responsabile

Dott. Geol. Paolo Vizzì

B.11.1 TERRENI COESIVI

DATI GENERALI

Z s	Profondità sondaggio da p.c.		(m)
Z_{w}	Profondità falda da p.c.	16,00	(m)
γ ₁	Peso di volume totale terreno sopra falda	19,0	(kN/m ³)
γ ₂	Peso di volume totale terreno sotto falda	19,0	(kN/m ³)
T_a	Temperatura ambiente	30	(°C)
T_f	Temperatura foro	20	(°C)

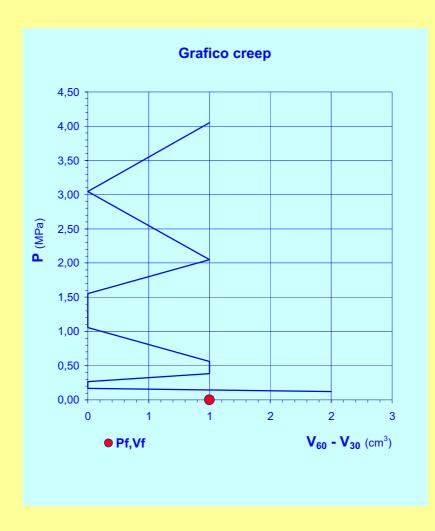
Guaina	sigla di indentificazione	1	
	n° cicli espansione	5	***
	(si consiglia l'utilizzo di guaine sottoposte ad		
	almeno 5 cicli di espansione)		
	Diametro effettivo	60	(mm)
Tipo tub	icini	lunghi	
H _m	Altezza manometro lettura da p.c.	0,60	(m)
H _c	Altezza cavità	0,80	(m)
Z p	Distanza centro sonda da p.c.(profondità di prova)	15,00	(m)
Perforaz	zione cavità		
	Metodo di perforazione	carotiere semplic	е
	Utilizzo fanghi (S/N)	N	
)	Diametro	66	(mm)
,	Peso specifico liquido circuito di misura	9,81	(kN/m ³
V _i	Volume sonda a pressione atmosferica	510	(cm ³)

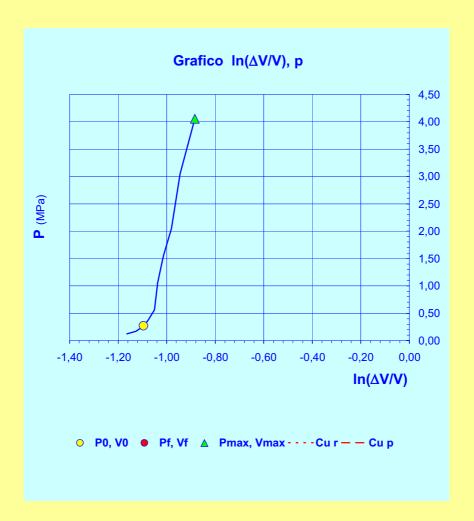
Dati obbligatori

B.11.1 TERRENI COESIVI

LETTURE CORRETTE

Р	V ₆₀	P+P _w	P _c	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(MPa)	(cm ³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
0,00	145,00	0,15	0,06	0,27	0,09	144,73		
0,05	232,0	0,20	0,08	0,36	0,12	231,64	4,32	2,00
0,10	245,0	0,25	0,08	0,49	0,17	244,51	4,09	0,00
0,20	257,0	0,35	0,09	0,77	0,27	256,23	3,90	0,00
0,32	265,0	0,47	0,09	1,10	0,38	263,90	3,79	1,00
0,50	276,0	0,65	0,09	1,61	0,56	274,39	3,64	1,00
1,00	283,0	1,15	0,10	3,05	1,06	279,95	3,57	0,00
1,50	295,0	1,65	0,10	4,48	1,55	290,52	3,44	0,00
2,00	312,0	2,15	0,10	5,92	2,05	306,08	3,27	1,00
3,00	333,0	3,15	0,11	8,79	3,05	324,21	3,08	0,00
4,00	371,0	4,15	0,10	11,70	4,05	359,30	2,78	1,00


Legenda	_egenda							
P	pressione imposta in fase di prova							
V ₆₀	lettura volume a 60 sec							
P _w	pressione fluido circuito misura (da manometro a centro sonda)							
P _c	correzione pressione, valore da ricavare dalla prova di taratura della guaina							
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$							
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini							
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_c$							
V _{inv}	inverso del volume V _{inv} = 1000/V _{60,cor}							
Creep	$= V_{60} - V_{30}$							


B.11.1 TERRENI COESIVI

PARAMETRI CARATTERISTICI

	une ita ozasti i eta ottoi		
N.B.	Inserire i valori di P_0 , V_0 e P_f , V_f sulla base dei grafici p , V_0 0 p, facendo riferimento alle indicazioni del foglio "Descriz_elaborazione" I valori numerici devono essere ricavati dalla tabella nel foglio "Letture_essere punti della curva		
P ₀ V ₀ P _f V _f	pressione inizial (termine ricompressione - inizio tratto elastico) volume inizial (termine ricompressione - inizio tratto elastico) pressione di scorrimento(inizio tratto plastico) volume di scorrimento(inizio tratto plastico) pressione limite	0,27 256,00 10,08	(MPa) (cm³) (MPa) (cm³) (MPa)
V _{lim}	volume limite $(V_{lim} = V_i + 2*V_0)$	1022,00	(cm ³)

B.11.1 TERRENI COESIVI

COESIONE NON DRENATA

STATO DI SFORZO "IN SITU"

k_o coefficiente di spinta a riposo 0,95 (-)

PARAMETRI ELASTICI

ν	coefficiente di Poisson	0,33	(-)
Gi	modulo di taglio	1	(MPa)
E _i	modulo pressiometrico	2	(MPa)
G_{sr}	modulo di taglio di scarico e ricarico	***************************************	(MPa)
E _{sr}	modulo pressiometrico di scarico e ricarico		(MPa)

N.B. I valori dei parametri di resistenza e deformabilità dipendono fortemente dai valori di Vo,Po e Vf,Pf definiti dall'utente. Si ritiene più corretto che l'utente esegua una valutazione dei parametri stessi scegliendo non una sola coppia di valori di Vo,Po e Vf,Pf, bensì un campo di variazione degli stessi.

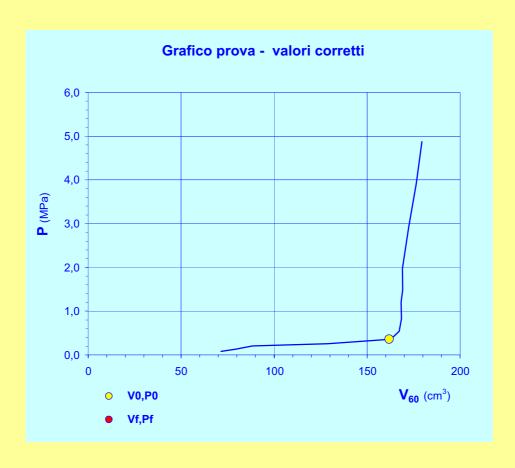
B.11.1 TERRENI COESIVI

DATI GENERALI

Z s	Profondità sondaggio da p.c.		(m)
Z_{w}	Profondità falda da p.c.	10,00	(m)
γ ₁	Peso di volume totale terreno sopra falda	19,0	(kN/m ³)
γ ₂	Peso di volume totale terreno sotto falda	19,0	(kN/m ³)
T _a	Temperatura ambiente	30	(°C)
T_f	Temperatura foro	20	(°C)

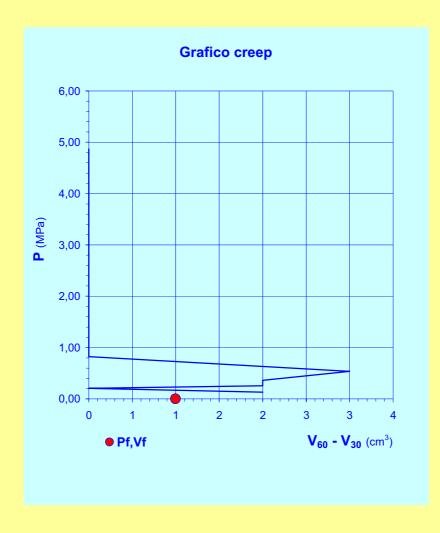
Guaina	sigla di indentificazione	1	
	n° cicli espansione	5	
	(si consiglia l'utilizzo di guaine sottoposte ad almeno 5 cicli di espansione)		•••••
	Diametro effettivo	60	(mm)
Tipo tub	icini	lunghi	
H _m	Altezza manometro lettura da p.c.	0,60	(m)
H _c	Altezza cavità	0,80	(m)
Z p	Distanza centro sonda da p.c.(profondità di prova)	9,00	(m)
Perforaz	ione cavità		
	Metodo di perforazione	carotiere semplic	е
	Utilizzo fanghi (S/N)	N	
)	Diametro	66	(mm)
,	Peso specifico liquido circuito di misura	9,81	(kN/m ³
V _i	Volume sonda a pressione atmosferica	510	(cm ³)

Dati obbligatori


B.11.1 TERRENI COESIVI

LETTURE CORRETTE

Р	V ₆₀	P+P _w	Pc	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(MPa)	(cm ³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
0,00	75,00	0,09	0,01	3,50	0,08	71,50		
0,05	85,0	0,14	0,01	5,52	0,13	79,48	12,58	2,00
0,13	97,0	0,22	0,02	8,57	0,20	88,43	11,31	0,00
0,20	140,0	0,29	0,04	10,90	0,26	129,10	7,75	2,00
0,33	178,0	0,42	0,06	15,20	0,36	162,80	6,14	2,00
0,51	190,0	0,60	0,07	22,70	0,54	167,30	5,98	3,00
0,80	203,0	0,89	0,07	34,59	0,82	168,41	5,94	0,00
1,20	219,0	1,29	0,09	50,78	1,20	168,22	5,94	0,00
1,50	232,0	1,59	0,10	62,84	1,49	169,16	5,91	0,00
2,00	252,0	2,09	0,12	83,07	1,97	168,93	5,92	0,00
3,00	296,0	3,09	0,16	123,64	2,93	172,36	5,80	0,00
4,00	341,0	4,09	0,19	164,53	3,90	176,47	5,67	0,00
5,00	385,0	5,09	0,22	205,54	4,87	179,46	5,57	0,00


Legenda	Legenda			
P	pressione imposta in fase di prova			
V ₆₀	lettura volume a 60 sec			
P_{w}	pressione fluido circuito misura (da manometro a centro sonda)			
P _c	correzione pressione, valore da ricavare dalla prova di taratura della guaina			
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$			
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini			
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_c$			
V _{inv}	inverso del volume V _{inv} = 1000/V _{60,cor}			
Creep	$= V_{60} - V_{30}$			


B.11.1 TERRENI COESIVI

PARAMETRI CARATTERISTICI

	WILLIA OT A CATALON CO		
N.B.	Inserire i valori di P_0 , V_0 e P_f , V_f sulla base dei grafici p , $V60$ p facendo riferimento alle indicazioni del foglio "Descriz_elaborazione" I valori numerici devono essere ricavati dalla tabella nel foglio "Letture essere punti della curva		
P ₀ V ₀ P _f	pressione inizial (termine ricompressione - inizio tratto elastico) volume inizial (termine ricompressione - inizio tratto elastico) pressione di scorrimento(inizio tratto plastico)	0,36 162,00	(MPa) (cm³) (MPa)
V _f P _{lim} V _{lim}	volume di scorrimento (inizio tratto plastico) pressione limite volume limite $(V_{lim} = V_i + 2*V_0)$	49,91 834,00	(cm ³) (MPa) (cm ³)

B.11.1 TERRENI COESIVI

COESIONE NON DRENATA

cup	valore di picco	#N/D	(MPa)
cur	valore residuo	#N/D	(MPa)
#N/D	#N/D		

STATO DI SFORZO "IN SITU"

k _o	coefficiente di spinta a riposo	2,11	(-)

PARAMETRI ELASTICI

ν	coefficiente di Poisson	0,33	(-)
G _i	modulo di taglio	1	(MPa)
E,	modulo pressiometrico	3	(MPa)
G _{sr}	modulo di taglio di scarico e ricarico		(MPa)
E _{sr}	modulo pressiometrico di scarico e ricarico		(MPa)

N.B. I valori dei parametri di resistenza e deformabilità dipendono fortemente dai valori di Vo,Po e Vf,Pf definiti dall'utente. Si ritiene più corretto che l'utente esegua una valutazione dei parametri stessi scegliendo non una sola coppia di valori di Vo,Po e Vf,Pf, bensì un campo di variazione degli stessi.

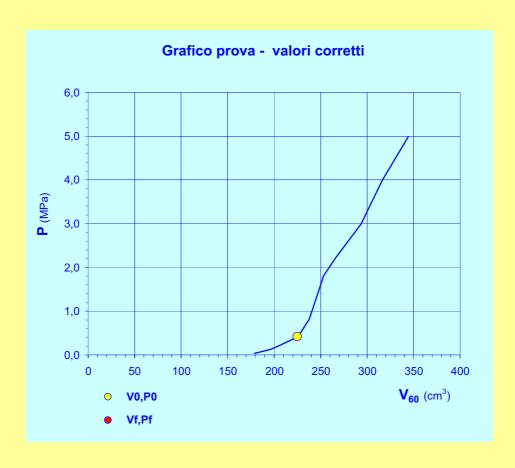
B.11.1 TERRENI COESIVI

DATI GENERALI

Z s	Profondità sondaggio da p.c.		(m)
\mathbf{Z}_{w}	Profondità falda da p.c.	13,00	(m)
γ ₁	Peso di volume totale terreno sopra falda	19,0	(kN/m ³)
γ ₂	Peso di volume totale terreno sotto falda	19,0	(kN/m ³)
T _a	Temperatura ambiente	30	(°C)
T _f	Temperatura foro	20	(°C)

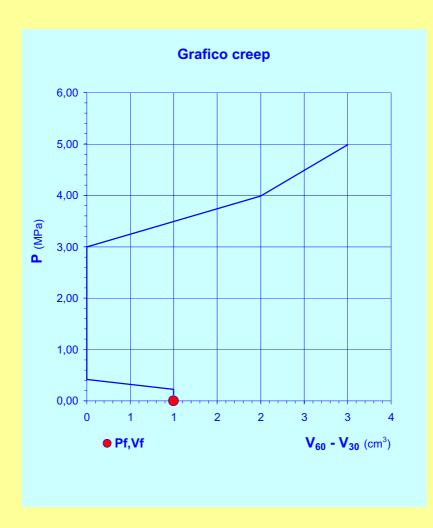
Guaina	sigla di indentificazione	1	
	n° cicli espansione	5	
	(si consiglia l'utilizzo di guaine sottoposte ad		
	almeno 5 cicli di espansione)		
	Diametro effettivo	60	(mm)
Tipo tub	icini	lunghi	
H _m	Altezza manometro lettura da p.c.	0,60	(m)
H _c	Altezza cavità	0,80	(m)
Z _p	Distanza centro sonda da p.c.(profondità di prova)	12,00	(m)
Perforaz	zione cavità		
	Metodo di perforazione	carotiere semplic	е
	Utilizzo fanghi (S/N)	N	
)	Diametro	66	(mm)
,	Peso specifico liquido circuito di misura	9,81	(kN/m ³
V i	Volume sonda a pressione atmosferica	510	(cm ³)

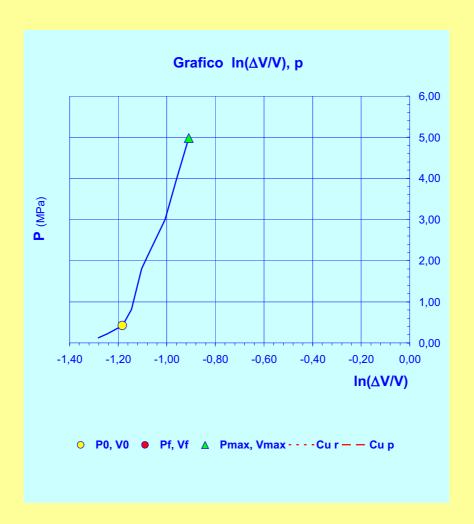
Dati obbligatori


B.11.1 TERRENI COESIVI

LETTURE CORRETTE

Р	V ₆₀	P+P _w	Pc	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(MPa)	(cm ³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
0,00	180,00	0,12	0,09	0,74	0,03	179,26		
0,10	199,0	0,22	0,10	2,87	0,13	196,13	5,10	1,00
0,20	212,0	0,32	0,10	5,03	0,22	206,97	4,83	1,00
0,40	235,0	0,52	0,11	9,38	0,42	225,62	4,43	0,00
0,80	256,0	0,92	0,11	18,26	0,81	237,74	4,21	0,00
1,20	271,0	1,32	0,11	27,19	1,21	243,81	4,10	0,00
1,80	294,0	1,92	0,12	40,60	1,81	253,40	3,95	0,00
2,20	315,0	2,32	0,12	49,52	2,20	265,48	3,77	0,00
3,00	361,0	3,12	0,13	67,30	3,00	293,70	3,40	0,00
4,00	406,0	4,12	0,14	89,58	3,99	316,42	3,16	2,00
5,00	456,0	5,12	0,14	111,97	4,98	344,03	2,91	3,00


Legend	Legenda			
P	pressione imposta in fase di prova			
V ₆₀	lettura volume a 60 sec			
P _w	pressione fluido circuito misura (da manometro a centro sonda)			
P _c	correzione pressione, valore da ricavare dalla prova di taratura della guaina			
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$			
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini			
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_c$			
V _{inv}	inverso del volume V _{inv} = 1000/V _{60,cor}			
Creep	$= V_{60} - V_{30}$			


B.11.1 TERRENI COESIVI

PARAMETRI CARATTERISTICI

	WETTO OTTO THE CONTROL		
N.B.	Inserire i valori di P_0 , V_0 e P_f , V_f sulla base dei grafici p , V_f 0 p , I facendo riferimento alle indicazioni del foglio "Descriz_elaborazione" I valori numerici devono essere ricavati dalla tabella nel foglio "Letture_essere punti della curva		
P ₀ V ₀ P _f V _f	pressione inizial (termine ricompressione - inizio tratto elastico) volume inizial (termine ricompressione - inizio tratto elastico) pressione di scorrimento (inizio tratto plastico) volume di scorrimento (inizio tratto plastico)	0,42 225,00	(MPa) (cm³) (MPa) (cm³)
P _{lim} V _{lim}	pressione limite volume limite ($V_{lim} = V_i + 2^*V_0$)	12,31 960,00	(MPa) (cm³)

B.11.1 TERRENI COESIVI

COESIONE NON DRENATA

cup	valore di picco	#N/D	(MPa)
cur	valore residuo	#N/D	(MPa)
#N/D	#N/D		

STATO DI SFORZO "IN SITU"

k _o	coefficiente di spinta a riposo	1,84	(-)

PARAMETRI ELASTICI

ν	coefficiente di Poisson	0,33	(-)
Gi	modulo di taglio	1	(MPa)
E _i	modulo pressiometrico	3	(MPa)
G _{sr}	modulo di taglio di scarico e ricarico	***************************************	(MPa)
E _{sr}	modulo pressiometrico di scarico e ricarico		(MPa)

N.B. I valori dei parametri di resistenza e deformabilità dipendono fortemente dai valori di Vo,Po e Vf,Pf definiti dall'utente. Si ritiene più corretto che l'utente esegua una valutazione dei parametri stessi scegliendo non una sola coppia di valori di Vo,Po e Vf,Pf, bensì un campo di variazione degli stessi.

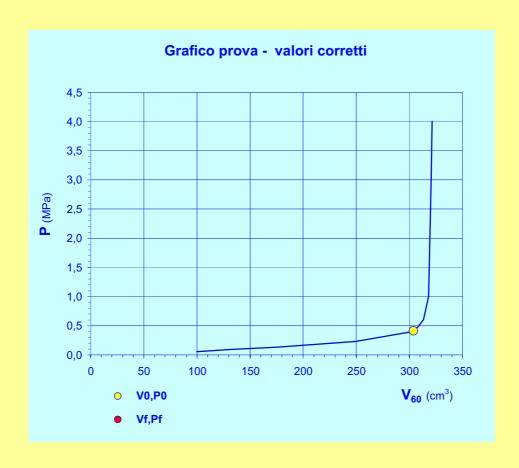
B.11.1 TERRENI COESIVI

DATI GENERALI

Z s	Profondità sondaggio da p.c.		(m)
\mathbf{Z}_{w}	Profondità falda da p.c.	11,00	(m)
γ ₁	Peso di volume totale terreno sopra falda	19,0	(kN/m ³)
γ ₂	Peso di volume totale terreno sotto falda	19,0	(kN/m ³)
T _a	Temperatura ambiente	30	(°C)
T _f	Temperatura foro	20	(°C)

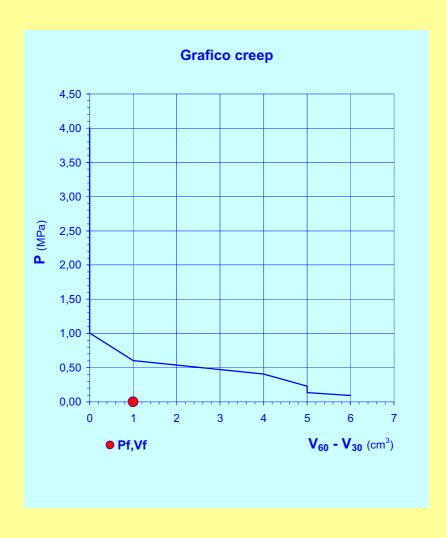
Guaina	sigla di indentificazione	1	
	n° cicli espansione	5	
	(si consiglia l'utilizzo di guaine sottoposte ad		
	almeno 5 cicli di espansione)	-	
	Diametro effettivo	60	(mm)
Γipo tub	picini	lunghi	
H _m	Altezza manometro lettura da p.c.	0,60	(m)
· Ic	Altezza cavità	0,80	(m)
7 p	Distanza centro sonda da p.c.(profondità di prova)	10,00	(m)
erforaz	zione cavità		
	Metodo di perforazione	carotiere semplic	е
	Utilizzo fanghi (S/N)	N	
)	Diametro	66	(mm)
,	Peso specifico liquido circuito di misura	9,81	(kN/m ³
/ :	Volume sonda a pressione atmosferica	510	(cm ³)

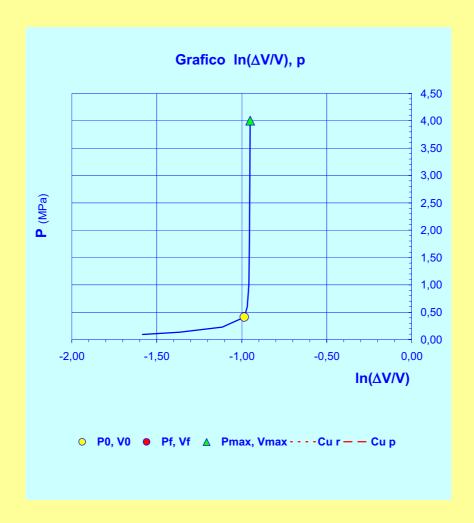
Dati obbligatori


B.11.1 TERRENI COESIVI

LETTURE CORRETTE

Р	V ₆₀	P+P _w	Pc	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(MPa)	(cm ³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
0,00	100,00	0,10	0,05	0,16	0,06	99,84		
0,05	132,0	0,15	0,06	0,27	0,09	131,73	7,59	6,00
0,10	175,0	0,20	0,07	0,39	0,13	174,61	5,73	5,00
0,21	250,0	0,31	0,09	0,66	0,23	249,34	4,01	5,00
0,40	306,0	0,50	0,10	1,17	0,41	304,83	3,28	4,00
0,60	315,0	0,70	0,10	1,75	0,61	313,25	3,19	1,00
1,00	321,0	1,10	0,10	2,90	1,00	318,10	3,14	0,00
1,50	323,0	1,60	0,10	4,34	1,50	318,66	3,14	0,00
2,00	325,0	2,10	0,10	5,78	2,00	319,22	3,13	0,00
3,00	329,0	3,10	0,10	8,67	3,00	320,33	3,12	0,00
4,00	333,0	4,10	0,10	11,56	4,00	321,44	3,11	0,00


Legenda	1
P	pressione imposta in fase di prova
V ₆₀	lettura volume a 60 sec
P _w	pressione fluido circuito misura (da manometro a centro sonda)
Pc	correzione pressione, valore da ricavare dalla prova di taratura della guaina
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_c$
V _{inv}	inverso del volume V _{inv} = 1000/V _{60,cor}
Creep	$= V_{60} - V_{30}$


B.11.1 TERRENI COESIVI

PARAMETRI CARATTERISTICI

N.B.	Inserire i valori di P_0 , V_0 e P_f , V_f sulla base dei grafici p , $V60 - p$, V_f	og(ΛR/R。) e	p.Creep.
14.5.	facendo riferimento alle indicazioni del foglio "Descriz_elaborazione"	-9 (- 11110) =	р, с. сор,
	I valori numerici devono essere ricavati dalla tabella nel foglio "Letture_c essere punti della curva	corrette" , ovve	ro devono
P_0	pressione inizial (termine ricompressione - inizio tratto elastico)	0,41	(MPa)
V_0	volume inizial (termine ricompressione - inizio tratto elastico)	304,00	(cm ³)
P_{f}	pressione di scorrimento(inizio tratto plastico)		(MPa)
V_{f}	volume di scorrimento(inizio tratto plastico)		(cm ³)
P _{lim}	pressione limite	209,76	(MPa)
V_{lim}	volume limite $(V_{lim} = V_i + 2*V_0)$	1118,00	(cm ³)

B.11.1 TERRENI COESIVI

COESIONE NON DRENATA

cup	valore di picco	#N/D	(MPa)
cur	valore residuo	#N/D	(MPa)
#N/D	#N/D		

STATO DI SFORZO "IN SITU"

k _o	coefficiente di spinta a riposo	2,16	(-)	

PARAMETRI ELASTICI

ν	coefficiente di Poisson	0,33	(-)
G _i	modulo di taglio	1	(MPa)
E_i	modulo pressiometrico	2	(MPa)
G _{sr}	modulo di taglio di scarico e ricarico		(MPa)
E _{sr}	modulo pressiometrico di scarico e ricarico		(MPa)

N.B. I valori dei parametri di resistenza e deformabilità dipendono fortemente dai valori di Vo,Po e Vf,Pf definiti dall'utente. Si ritiene più corretto che l'utente esegua una valutazione dei parametri stessi scegliendo non una sola coppia di valori di Vo,Po e Vf,Pf, bensì un campo di variazione degli stessi.

B.11.2. TERRENI NON COESIVI

DATI GENERALI

Z s	Profondità sondaggio da p.c.	20,00	(m)
Z_{w}	Profondità falda da p.c.	14,00	(m)
γ ₁	Peso di volume totale terreno sopra falda	19,00	(kN/m ³)
γ ₂	Peso di volume totale terreno sotto falda	19,00	(kN/m ³)
T _a	Temperatura ambiente	20	(°C)
$T_{\rm f}$	Temperatura foro	20	(°C)

SONDA			
Guaina	N n° cicli espansione (si consiglia l'utilizzo di guaine sottoposte ad almeno 5 cicli di espansione)	<u>1</u> 5	
	Diametro effettivo	60	(mm)
Tipo tub	icini	lunghi	
H _m	Altezza manometro lettura da p.c.	0,60	(m)
H _c	Altezza cavità	0,80	(m)
Z _p	Distanza centro sonda da p.c.(profondità di prova)	4,50	(m)
Perforaz	zione cavità		
	Metodo di perforazione carotie	ere semplic	е
	Utilizzo fanghi (S/N)	N	
ф	Diametro	66	(mm)
γ	Peso specifico liquido circuito di misura	9,81	(kN/m ³)
V.	Volume sonda a pressione atmosferica	495	(cm ³)

Dati obbligatori

B.11.2. TERRENI NON COESIVI

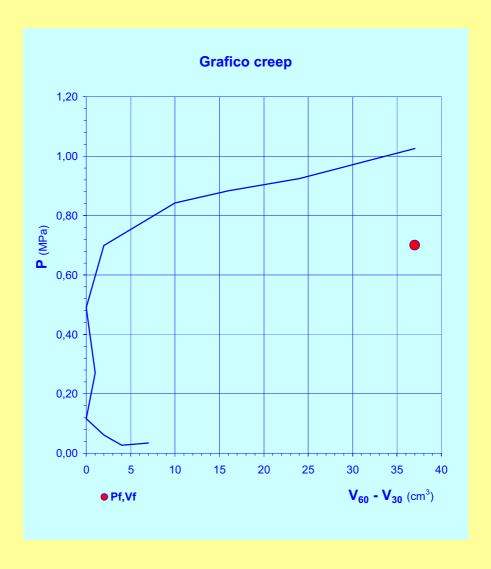
LETTURE CORRETTE

Р	V ₆₀	P+P _w	Pc	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(MPa)	(cm ³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
0,00	60,00	0,05	0,02	0,06	0,03	59,94		
0,02	97,0	0,07	0,04	0,07	0,03	96,93	10,32	7,00
0,03	131,0	0,08	0,05	0,06	0,03	130,94	7,64	4,00
0,08	164,0	0,13	0,07	0,13	0,06	163,87	6,10	2,00
0,14	193,0	0,19	0,07	0,24	0,12	192,76	5,19	0,00
0,30	227,0	0,35	0,08	0,57	0,27	226,43	4,42	1,00
0,53	265,0	0,58	0,09	1,03	0,49	263,97	3,79	0,00
0,75	301,0	0,80	0,10	1,47	0,70	299,53	3,34	2,00
0,90	341,0	0,95	0,11	1,78	0,84	339,22	2,95	10,00
0,95	400,0	1,00	0,12	1,86	0,88	398,14	2,51	16,00
1,00	464,0	1,05	0,13	1,95	0,92	462,05	2,16	24,00
1,10	621,0	1,15	0,13	2,16	1,03	618,84	1,62	37,00

Legenda	egenda				
P	pressione imposta in fase di prova				
V ₆₀	lettura volume a 60 sec				
P _w	pressione fluido circuito misura (da manometro a centro sonda)				
Pc	correzione pressione, valore da ricavare dalla prova di taratura della guaina				
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$				
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini				
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_c$				
V _{inv}	inverso del volume V _{inv} = 1000/V _{60,cor}				
Creep	$= V_{60} - V_{30}$				

B.11.2. TERRENI NON COESIVI

PARAMETRI CARATTERISTICI


N.B. Inserire i valori di P_0 , V_0 e P_f , V_f sulla base dei grafici p, V60 p, $log(\Delta R/R_0)$ e p, Creep, facendo riferimento alle indicazioni del foglio "Descriz_elaborazione" I valori numerici devono essere ricavati dalla tabella nel foglio "Letture_corrette" , ovvero devono essere punti della curva

P_0	pressione iniziale (termine ricompressione - inizio tratto elastico)	0,06	(MPa)
V_0	volume iniziale (termine ricompressione - inizio tratto elastico)	163,00	(cm ³)
P_{f}	pressione di scorrimento (inizio tratto plastico)	0,70	(MPa)
V_f	volume di scorrimento (inizio tratto plastico)	299,00	(cm ³)

P_{lim} pressione limite

299,00 (cm³) 1,10 (MPa) V_{lim} volume limite $V_{lim} = V_i + 2*V_0$ 821,00 (cm³)

B.11.2. TERRENI NON COESIVI

B.11.2. TERRENI NON COESIVI

PARAMETRI ELASTICI

ν	coefficiente di Poisson	0,3	(-)
Gi	modulo di taglio	3,42	(MPa)
E _i	modulo pressiometrico	8,88	(MPa)
G _{sr}	modulo di taglio di scarico e ricarico		(MPa)
E _{sr}	modulo pressiometrico di scarico e ricarico		(MPa)

ANGOLO DI ATTRITO E DILATANZA

S	pendenza tratto finale curva $log(p-y), log(\epsilon_r)$	0,39	(-)
ф _{сv} '	angolo di attrito a volume costante	25	(°)
φ'	angolo di attrito	32,0	(°)
Ψ	angolo di dilatanza	8,0	(°)

	30°	sabbia fine uniforme
	34°	sabbia fine ben gradata
φ _{cv} '	34°	sabbia media uniforme
Ψсν	37°	sabbia media ben gradata
	37°	sabbia grossa uniforme
	40°	ghiaia sabbioso-limosa ben gradata

B.11.1 TERRENI COESIVI

DATI GENERALI

Z s	Profondità sondaggio da p.c.	25,00	(m)
Z_{w}	Profondità falda da p.c.	25,00	(m)
γ ₁	Peso di volume totale terreno sopra falda	19,0	(kN/m ³)
γ ₂	Peso di volume totale terreno sotto falda	19,0	(kN/m ³)
T_a	Temperatura ambiente	20	(°C)
$T_{\rm f}$	Temperatura foro	20	(°C)

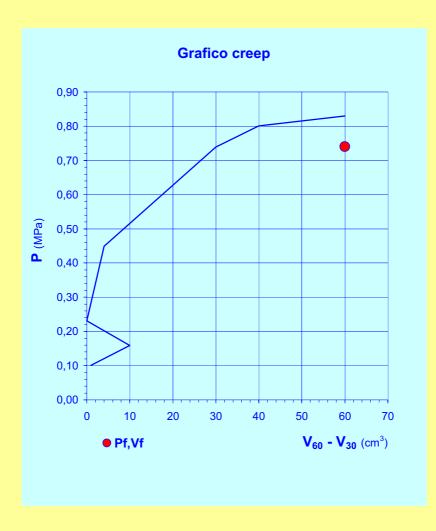
Guaina	sigla di indentificazione	1	
	n° cicli espansione	5	
	(si consiglia l'utilizzo di guaine sottoposte ad		
	almeno 5 cicli di espansione)	00	
	Diametro effettivo	60	(mm)
Tipo tub	icini	lunghi	
H _m	Altezza manometro lettura da p.c.	0,60	(m)
H _c	Altezza cavità	0,80	(m)
Z p	Distanza centro sonda da p.c.(profondità di prova)	7,00	(m)
Perforaz	zione cavità		
	Metodo di perforazione	carotiere semplic	е
	Utilizzo fanghi (S/N)	N	
	Diametro	66	(mm)
/	Peso specifico liquido circuito di misura	9,81	(kN/m ³
V _i	Volume sonda a pressione atmosferica	535	(cm ³)

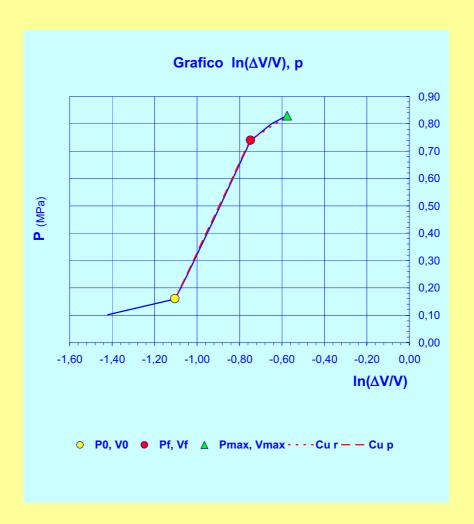
Dati obbligatori

B.11.1 TERRENI COESIVI

LETTURE CORRETTE

Р	V ₆₀	P+P _w	P _c	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(MPa)	(cm ³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
0,00	0,00	0,07	0,00	0,40	0,07	-0,40		
0,08	171,0	0,15	0,05	0,54	0,10	170,46	5,87	1,00
0,15	266,0	0,22	0,07	0,85	0,16	265,15	3,77	10,00
0,23	287,0	0,30	0,07	1,23	0,23	285,77	3,50	0,00
0,45	356,0	0,52	0,08	2,39	0,45	353,61	2,83	4,00
0,75	485,0	0,82	0,09	3,92	0,74	481,08	2,08	30,00
0,82	590,0	0,89	0,09	4,25	0,80	585,75	1,71	40,00
0,85	690,0	0,92	0,10	4,40	0,83	685,60	1,46	60,00


Legenda	Legenda Company Compan				
P	pressione imposta in fase di prova				
V ₆₀	lettura volume a 60 sec				
P _w	pressione fluido circuito misura (da manometro a centro sonda)				
Pc	correzione pressione, valore da ricavare dalla prova di taratura della guaina				
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$				
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini				
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_c$				
V _{inv}	inverso del volume V inv = 1000/V 60,cor				
Creep	$= V_{60} - V_{30}$				


B.11.1 TERRENI COESIVI

PARAMETRI CARATTERISTICI

N.B.	Inserire i valori di P_0 , V_0 e P_f , V_f sulla base dei grafici p , $V60$ p , facendo riferimento alle indicazioni del foglio "Descriz_elaborazione"	<i>log(∆R/R₀)</i> e	p,Creep,
	I valori numerici devono essere ricavati dalla tabella nel foglio "Letture_ essere punti della curva	_corrette" , ovve	ro devono
P_0	pressione inizial (termine ricompressione - inizio tratto elastico)	0,16	(MPa)
V_0	volume iniziale (termine ricompressione - inizio tratto elastico)	260,00	(cm ³)
P_{f}	pressione di scorrimento(inizio tratto plastico)	0,74	(MPa)
V_{f}	volume di scorrimento(inizio tratto plastico)	481,00	(cm ³)
P _{lim}	pressione limite	0,89	(MPa)
V_{lim}	volume limite ($V_{lim} = V_i + 2*V_0$)	1055,00	(cm ³)

B.11.1 TERRENI COESIVI

COESIONE NON DRENATA

cup	valore di picco	1,6	(MPa)
CU _r	valore residuo	0,5	(MPa)

STATO DI SFORZO "IN SITU"

k _o	coefficiente di spinta a riposo	1,20	(-)

PARAMETRI ELASTICI

ν	coefficiente di Poisson	0,33	(-)
G _i	modulo di taglio	2	(MPa)
E _i	modulo pressiometrico	6	(MPa)
G _{sr}	modulo di taglio di scarico e ricarico		(MPa)
E _{sr}	modulo pressiometrico di scarico e ricarico		(MPa)

N.B. I valori dei parametri di resistenza e deformabilità dipendono fortemente dai valori di Vo,Po e Vf,Pf definiti dall'utente. Si ritiene più corretto che l'utente esegua una valutazione dei parametri stessi scegliendo non una sola coppia di valori di Vo,Po e Vf,Pf, bensì un campo di variazione degli stessi.

B.11.2. TERRENI NON COESIVI

DATI GENERALI

Z s	Profondità sondaggio da p.c.	20,00	(m)
Z_{w}	Profondità falda da p.c.	14,00	(m)
γ ₁	Peso di volume totale terreno sopra falda	19,00	(kN/m ³)
γ ₂	Peso di volume totale terreno sotto falda	19,00	(kN/m ³)
T _a	Temperatura ambiente	20	(°C)
T_f	Temperatura foro	20	(°C)

Guaina	N	1	
	n° cicli espansione	5	
	(si consiglia l'utilizzo di guaine sottoposte ad almeno 5 cicli di espansione)		_
	Diametro effettivo	60	(mm)
Tipo tuk	picini	lunghi	
H _m	Altezza manometro lettura da p.c.	0,60	(m)
H _c	Altezza cavità	0,80	(m)
Z _D	Distanza centro sonda da p.c.(profondità di prova)	9,00	(m)
erfora:	zione cavità		
	Metodo di perforazione caroti	iere semplic	е
	Utilizzo fanghi (S/N)	N	
,	Diametro	66	(mm)
/	Peso specifico liquido circuito di misura	9,81	(kN/m ³
V _i	Volume sonda a pressione atmosferica	495	(cm ³)

Dati obbligatori

B.11.2. TERRENI NON COESIVI

LETTURE CORRETTE

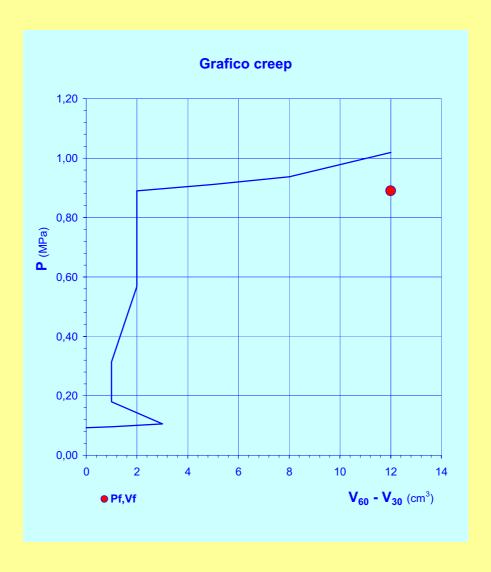
Р	V ₆₀	P+P _w	Pc	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(MPa)	(cm ³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
0,00	35,00	0,09	0,02	0,16	0,08	34,84		
0,02	52,0	0,11	0,02	0,20	0,09	51,80	19,30	0,00
0,03	78,0	0,12	0,03	0,20	0,10	77,80	12,85	1,00
0,05	103,0	0,14	0,04	0,22	0,11	102,78	9,73	3,00
0,14	134,0	0,23	0,05	0,38	0,18	133,62	7,48	1,00
0,29	166,0	0,38	0,07	0,66	0,31	165,34	6,05	1,00
0,55	206,0	0,64	0,08	1,20	0,57	204,80	4,88	2,00
0,70	229,0	0,79	0,08	1,51	0,71	227,49	4,40	2,00
0,88	247,0	0,97	0,08	1,88	0,89	245,12	4,08	2,00
0,92	315,0	1,01	0,10	1,92	0,91	313,08	3,19	5,00
0,96	398,0	1,05	0,12	1,98	0,94	396,02	2,53	8,00
1,05	548,0	1,14	0,13	2,15	1,02	545,85	1,83	12,00

Legenda	egenda				
P	pressione imposta in fase di prova				
V ₆₀	lettura volume a 60 sec				
P _w	pressione fluido circuito misura (da manometro a centro sonda)				
Pc	correzione pressione, valore da ricavare dalla prova di taratura della guaina				
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$				
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini				
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_c$				
V _{inv}	inverso del volume V _{inv} = 1000/V _{60,cor}				
Creep	$= V_{60} - V_{30}$				

B.11.2. TERRENI NON COESIVI

PARAMETRI CARATTERISTICI

N.B. Inserire i valori di P₀, V₀ e P₁, V₁ sulla base dei grafici p, V60 p, log(ΔR/R₀) e p,Creep, facendo riferimento alle indicazioni del foglio "Descriz_elaborazione"
I valori numerici devono essere ricavati dalla tabella nel foglio "Letture_corrette", ovvero devono essere punti della curva


P_0	pressione iniziale (termine ricompressione - inizio tratto elastico)	0,11	(MPa)
V_0	volume iniziale (termine ricompressione - inizio tratto elastico)	102,00	(cm ³)
P_{f}	pressione di scorrimento (inizio tratto plastico)	0,89	(MPa)

245,00 (cm³)

1,07 (MPa) 699,00 (cm³)

 $egin{array}{ll} V_f & \mbox{volume di scorrimento (inizio tratto plastico)} \\ P_{lim} & \mbox{pressione limite} \\ V_{lim} & \mbox{volume limite} & V_{lim} = V_i + 2^*V_0 \\ \end{array}$

B.11.2. TERRENI NON COESIVI

B.11.2. TERRENI NON COESIVI

PARAMETRI ELASTICI

ν	coefficiente di Poisson	0,3	(-)
G _i	modulo di taglio	3,65	(MPa)
E_i	modulo pressiometrico	9,48	(MPa)
G sr	modulo di taglio di scarico e ricarico		(MPa)
Esr	modulo pressiometrico di scarico e ricarico		(MPa)

ANGOLO DI ATTRITO E DILATANZA

S	pendenza tratto finale curva $log(p-y), log(\epsilon_r)$	0,13	(-)
ф _{сv} '	angolo di attrito a volume costante	25	(°)
φ'	angolo di attrito	11,9	(°)
Ψ	angolo di dilatanza	-13,7	(°)

	30°	sabbia fine uniforme
	34°	sabbia fine ben gradata
4.1	34°	sabbia media uniforme
φ _{cv} '	37°	sabbia media ben gradata
	37°	sabbia grossa uniforme
	40°	ghiaia sabbioso-limosa ben gradata

B.11.2. TERRENI NON COESIVI

DATI GENERALI

Z s	Profondità sondaggio da p.c.	30,00	(m)
Z_{w}	Profondità falda da p.c.	14,00	(m)
γ ₁	Peso di volume totale terreno sopra falda	19,00	(kN/m ³)
γ ₂	Peso di volume totale terreno sotto falda	19,00	(kN/m ³)
T _a	Temperatura ambiente	20	(°C)
T_f	Temperatura foro	20	(°C)

SONDA			
Guaina	N n° cicli espansione (si consiglia l'utilizzo di guaine sottoposte ad almeno 5 cicli di espansione)	1 5	
	Diametro effettivo	60	(mm)
Tipo tuk	picini	lunghi	
H _m	Altezza manometro lettura da p.c.	0,60	(m)
H _c	Altezza cavità	0,80	(m)
Z _p	Distanza centro sonda da p.c.(profondità di prova)	4,50	(m)
•	zione cavità		<u></u> ' '
	Metodo di perforazione caroti	ere semplic	е
	Utilizzo fanghi (S/N)	N	
φ	Diametro	66	(mm)
γ	Peso specifico liquido circuito di misura	9,81	(kN/m ³)
Vi	Volume sonda a pressione atmosferica	495	(cm ³)
'			(3)

Dati obbligatori

B.11.2. TERRENI NON COESIVI

LETTURE CORRETTE

Р	V ₆₀	P+P _w	Pc	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(MPa)	(cm³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
0,00	55,00	0,05	0,02	0,06	0,03	54,94		
0,04	75,0	0,09	0,03	0,12	0,06	74,88	13,36	5,00
0,05	111,0	0,10	0,04	0,12	0,06	110,88	9,02	5,00
0,08	160,0	0,13	0,07	0,13	0,06	159,87	6,26	4,00
0,16	188,0	0,21	0,07	0,29	0,14	187,71	5,33	2,00
0,39	233,0	0,44	0,08	0,76	0,36	232,24	4,31	1,00
0,65	283,0	0,70	0,10	1,27	0,60	281,73	3,55	1,00
0,85	341,0	0,90	0,11	1,67	0,79	339,33	2,95	4,00
0,98	406,0	1,03	0,12	1,92	0,91	404,08	2,47	6,00
1,08	499,0	1,13	0,13	2,11	1,00	496,89	2,01	19,00
1,10	584,0	1,15	0,13	2,16	1,03	581,84	1,72	24,00

Legenda	Legenda					
P	pressione imposta in fase di prova					
V ₆₀	lettura volume a 60 sec					
P _w	pressione fluido circuito misura (da manometro a centro sonda)					
P _c	correzione pressione, valore da ricavare dalla prova di taratura della guaina					
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$					
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini					
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_c$					
V _{inv}	inverso del volume V _{inv} = 1000/V _{60,cor}					
Creep	$= V_{60} - V_{30}$					

B.11.2. TERRENI NON COESIVI

PARAMETRI CARATTERISTICI

N.B. Inserire i valori di P₀, V₀ e Pƒ, Vƒ sulla base dei grafici p, V60 p, log(△R/R₀) e p,Creep, facendo riferimento alle indicazioni del foglio "Descriz_elaborazione"

I valori numerici **devono** essere ricavati dalla tabella nel foglio "Letture_corrette" , ovvero devono essere punti della curva

P_0	pressione iniziale	(termine	ricompressione	- inizio	tratto	elastico))
-------	--------------------	----------	----------------	----------	--------	-----------	---

 V_0 volume iniziale (termine ricompressione - inizio tratto elastico)

P_f pressione di scorrimento (inizio tratto plastico)

V_f volume di scorrimento (inizio tratto plastico)

Plim pressione limite

 V_{lim} volume limite $V_{lim} = V_i + 2^*V_0$

0,06	(MPa)
159.00	(cm ³)

B.11.2. TERRENI NON COESIVI

B.11.2. TERRENI NON COESIVI

PARAMETRI ELASTICI

ν	coefficiente di Poisson		0,3	(-)
Gi	modulo di taglio		3,02	(MPa)
E _i	modulo pressiometrico		7,85	(MPa)
G _{sr}	modulo di taglio di scarico e ricarico	_		(MPa)
E _{sr}	modulo pressiometrico di scarico e ricarico			(MPa)

ANGOLO DI ATTRITO E DILATANZA

S	pendenza tratto finale curva $log(p-y), log(\epsilon_r)$	0,39	(-)
φ _{cv} "	angolo di attrito a volume costante	25	(°)
φ'	angolo di attrito	32,0	(°)
Ψ	angolo di dilatanza	7,9	(°)

	30°	sabbia fine uniforme
	34°	sabbia fine ben gradata
	34°	sabbia media uniforme
φ _{cv} "	37°	sabbia media ben gradata
	37°	sabbia grossa uniforme
	40°	ghiaia sabbioso-limosa ben gradata

B.11.2. TERRENI NON COESIVI

DATI GENERALI

Z s	Profondità sondaggio da p.c.	30,00	(m)
Z_{w}	Profondità falda da p.c.	14,00	(m)
γ ₁	Peso di volume totale terreno sopra falda	19,00	(kN/m ³)
γ ₂	Peso di volume totale terreno sotto falda	19,00	(kN/m ³)
T _a	Temperatura ambiente	20	(°C)
T_f	Temperatura foro	20	(°C)

Guaina	N	1	
	n° cicli espansione	5	
	(si consiglia l'utilizzo di guaine sottoposte ad almeno 5 cicli di espansione)		_
	Diametro effettivo	60	(mm)
Tipo tul	picini	lunghi	
H _m	Altezza manometro lettura da p.c.	0,60	(m)
H _c	Altezza cavità	0,80	(m)
Z _D	Distanza centro sonda da p.c.(profondità di prova)	21,00	(m)
erfora	zione cavità		
	Metodo di perforazione carot	iere semplic	е
	Utilizzo fanghi (S/N)	N	
)	Diametro	66	(mm)
•	Peso specifico liquido circuito di misura	9,81	(kN/m ³
∕ i	Volume sonda a pressione atmosferica	495	(cm ³)

Dati obbligatori

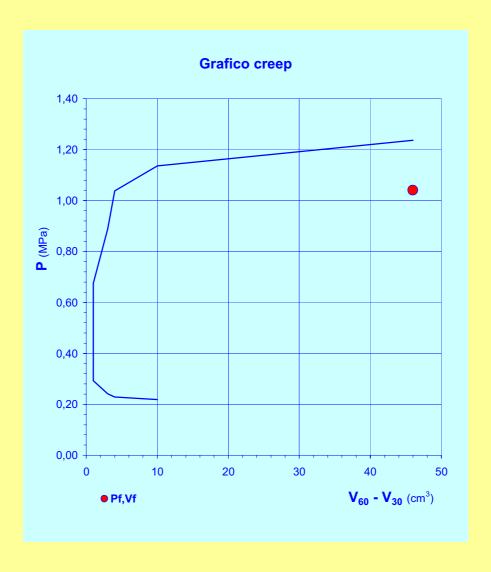
B.11.2. TERRENI NON COESIVI

LETTURE CORRETTE

Р	V ₆₀	P+P _w	P _c	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(MPa)	(cm ³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
0,00	0,00	0,21	0,00	0,45	0,21	-0,45		
0,03	60,0	0,24	0,02	0,46	0,22	59,54	16,80	10,00
0,05	92,0	0,26	0,03	0,48	0,23	91,52	10,93	4,00
0,08	126,0	0,29	0,05	0,51	0,24	125,49	7,97	3,00
0,15	165,0	0,36	0,07	0,62	0,29	164,38	6,08	1,00
0,38	218,0	0,59	0,08	1,08	0,51	216,92	4,61	1,00
0,55	255,0	0,76	0,09	1,42	0,67	253,58	3,94	1,00
0,78	316,0	0,99	0,10	1,87	0,89	314,13	3,18	3,00
0,94	381,0	1,15	0,11	2,19	1,04	378,81	2,64	4,00
1,05	462,0	1,26	0,13	2,40	1,14	459,60	2,18	10,00
1,15	615,0	1,36	0,13	2,61	1,24	612,39	1,63	46,00

Legenda				
P	pressione imposta in fase di prova			
V ₆₀	lettura volume a 60 sec			
P _w	pressione fluido circuito misura (da manometro a centro sonda)			
Pc	correzione pressione, valore da ricavare dalla prova di taratura della guaina			
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$			
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini			
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_c$			
V _{inv}	inverso del volume V _{inv} = 1000/V _{60,cor}			
Creep	$= V_{60} - V_{30}$			

B.11.2. TERRENI NON COESIVI



PARAMETRI CARATTERISTICI

N.B. Inserire i valori di P₀, V₀ e P₆, V₆ sulla base dei grafici p, V60 p, log(ΔR/R₀) e p,Creep, facendo riferimento alle indicazioni del foglio "Descriz_elaborazione"
I valori numerici devono essere ricavati dalla tabella nel foglio "Letture_corrette", ovvero devono essere punti della curva

P_0	pressione iniziale (termine ricompressione - inizio tratto elastico)	0,24	(MPa)
V_0	volume iniziale (termine ricompressione - inizio tratto elastico)	125,00	(cm ³)
P_f	pressione di scorrimento (inizio tratto plastico)	1,04	(MPa)
V_f	volume di scorrimento (inizio tratto plastico)	378,00	(cm ³)
P_{lim}	pressione limite	1,29	(MPa)
V_{lim}	volume limite $V_{lim} = V_i + 2^*V_0$	745,00	(cm ³)

B.11.2. TERRENI NON COESIVI

B.11.2. TERRENI NON COESIVI

PARAMETRI ELASTICI

ν	coefficiente di Poisson	0,3	(-)
Gi	modulo di taglio	2,36	(MPa)
E _i	modulo pressiometrico	6,14	(MPa)
G sr	modulo di taglio di scarico e ricarico		(MPa)
E _{sr}	modulo pressiometrico di scarico e ricarico		(MPa)

ANGOLO DI ATTRITO E DILATANZA

S	pendenza tratto finale curva $log(p-y), log(\epsilon_r)$	0,35	(-)
φ _{cv} '	angolo di attrito a volume costante	25	(°)
φ'	angolo di attrito	29,1	(°)
Ψ	angolo di dilatanza	4,6	(°)

	30°	sabbia fine uniforme
	34°	sabbia fine ben gradata
φ _{cν} '	34°	sabbia media uniforme
Ψсν	37°	sabbia media ben gradata
	37°	sabbia grossa uniforme
	40°	ghiaia sabbioso-limosa ben gradata

B.11.1 TERRENI COESIVI

DATI GENERALI

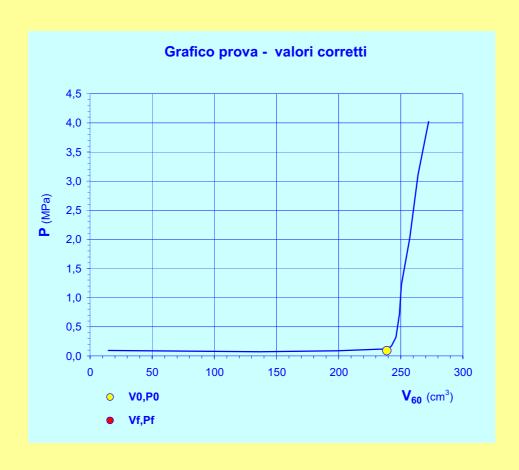
Z s	Profondità sondaggio da p.c.		(m)
\mathbf{Z}_{w}	Profondità falda da p.c.	14,00	(m)
γ ₁	Peso di volume totale terreno sopra falda	19,0	(kN/m ³)
γ ₂	Peso di volume totale terreno sotto falda	19,0	(kN/m ³)
T _a	Temperatura ambiente	30	(°C)
T_f	Temperatura foro	20	(°C)

SONDA

Guaina	sigla di indentificazione n° cicli espansione	1 6
	(si consiglia l'utilizzo di guaine sottoposte ad almeno 5 cicli di espansione)	
	Diametro effettivo	60 (mm)
Tipo tub	icini	lunghi
H _m	Altezza manometro lettura da p.c.	0,60 (m)
H _c	Altezza cavità	0,80 (m)
Z_p	Distanza centro sonda da p.c.(profondità di prova)	10,00 (m)
Perforaz	ione cavità	
	Metodo di perforazione	carotiere semplice

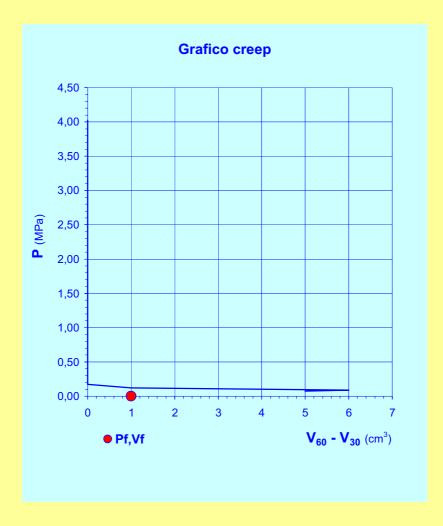
	Metodo di perforazione	carotiere semplice	
	Utilizzo fanghi (S/N)	N	
ф	Diametro	66 (mm)
γ	Peso specifico liquido circuito di misura	9,81 (kN/m ³)
V _i	Volume sonda a pressione atmosferica	510	cm ³)

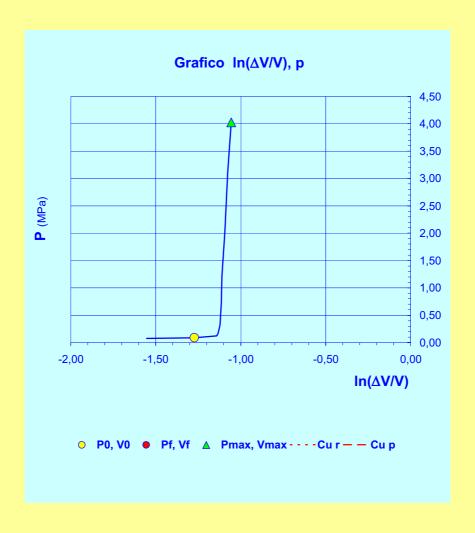
Dati obbligatori


B.11.1 TERRENI COESIVI

LETTURE CORRETTE

V ₆₀	P+P _w	P _c	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(cm ³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
15,00	0,10	0,01	0,27	0,09	14,73		
137,0	0,13	0,06	0,21	0,07	136,79	7,31	5,00
199,0	0,16	0,07	0,26	0,09	198,74	5,03	6,00
240,0	0,20	0,08	0,35	0,12	239,65	4,17	1,00
243,0	0,25	0,08	0,49	0,17	242,51	4,12	0,00
247,0	0,40	0,08	0,92	0,32	246,08	4,06	0,00
251,0	0,80	0,09	2,07	0,72	248,93	4,02	0,00
254,0	1,30	0,09	3,51	1,22	250,49	3,99	0,00
263,0	2,10	0,09	5,81	2,01	257,19	3,89	0,00
273,0	3,20	0,09	8,98	3,11	264,02	3,79	0,00
284,0	4,10	0,08	11,61	4,02	272,39	3,67	0,00
	(cm³) 15,00 137,0 199,0 240,0 243,0 247,0 251,0 263,0 273,0	(cm³) (MPa) 15,00 0,10 137,0 0,13 199,0 0,16 240,0 0,20 243,0 0,25 247,0 0,40 251,0 0,80 254,0 1,30 263,0 2,10 273,0 3,20	(cm³) (MPa) (MPa) 15,00 0,10 0,01 137,0 0,13 0,06 199,0 0,16 0,07 240,0 0,20 0,08 243,0 0,25 0,08 247,0 0,40 0,08 251,0 0,80 0,09 254,0 1,30 0,09 263,0 2,10 0,09 273,0 3,20 0,09	(cm³) (MPa) (MPa) (cm³) 15,00 0,10 0,01 0,27 137,0 0,13 0,06 0,21 199,0 0,16 0,07 0,26 240,0 0,20 0,08 0,35 243,0 0,25 0,08 0,49 247,0 0,40 0,08 0,92 251,0 0,80 0,09 2,07 254,0 1,30 0,09 3,51 263,0 2,10 0,09 5,81 273,0 3,20 0,09 8,98	(cm³) (MPa) (MPa) (cm³) (MPa) 15,00 0,10 0,01 0,27 0,09 137,0 0,13 0,06 0,21 0,07 199,0 0,16 0,07 0,26 0,09 240,0 0,20 0,08 0,35 0,12 243,0 0,25 0,08 0,49 0,17 247,0 0,40 0,08 0,92 0,32 251,0 0,80 0,09 2,07 0,72 254,0 1,30 0,09 3,51 1,22 263,0 2,10 0,09 5,81 2,01 273,0 3,20 0,09 8,98 3,11	(cm³) (MPa) (MPa) (cm³) (MPa) (cm³) 15,00 0,10 0,01 0,27 0,09 14,73 137,0 0,13 0,06 0,21 0,07 136,79 199,0 0,16 0,07 0,26 0,09 198,74 240,0 0,20 0,08 0,35 0,12 239,65 243,0 0,25 0,08 0,49 0,17 242,51 247,0 0,40 0,08 0,92 0,32 246,08 251,0 0,80 0,09 2,07 0,72 248,93 254,0 1,30 0,09 3,51 1,22 250,49 263,0 2,10 0,09 5,81 2,01 257,19 273,0 3,20 0,09 8,98 3,11 264,02	(cm³) (MPa) (MPa) (cm³) (MPa) (cm³) (cm³) 15,00 0,10 0,01 0,27 0,09 14,73 137,0 0,13 0,06 0,21 0,07 136,79 7,31 199,0 0,16 0,07 0,26 0,09 198,74 5,03 240,0 0,20 0,08 0,35 0,12 239,65 4,17 243,0 0,25 0,08 0,49 0,17 242,51 4,12 247,0 0,40 0,08 0,92 0,32 246,08 4,06 251,0 0,80 0,09 2,07 0,72 248,93 4,02 254,0 1,30 0,09 3,51 1,22 250,49 3,99 263,0 2,10 0,09 5,81 2,01 257,19 3,89 273,0 3,20 0,09 8,98 3,11 264,02 3,79


Legenda	Legenda				
P	pressione imposta in fase di prova				
V ₆₀	lettura volume a 60 sec				
P_{w}	pressione fluido circuito misura (da manometro a centro sonda)				
P _c	correzione pressione, valore da ricavare dalla prova di taratura della guaina				
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$				
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini				
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_{c}$				
V _{inv}	inverso del volume V inv = 1000/V 60,cor				
Creep	$= V_{60} - V_{30}$				


B.11.1 TERRENI COESIVI

PARAMETRI CARATTERISTICI

	une ita orași i electrorioi		
N.B.	Inserire i valori di P_0 , V_0 e P_f , V_f sulla base dei grafici p , $V60$ p facendo riferimento alle indicazioni del foglio "Descriz_elaborazione" I valori numerici devono essere ricavati dalla tabella nel foglio "Letture essere punti della curva		
P ₀ V ₀	pressione inizial (termine ricompressione - inizio tratto elastico) volume inizial (termine ricompressione - inizio tratto elastico)	0,09 239,00	(MPa) (cm³)
P_f	pressione di scorrimento(inizio tratto plastico) volume di scorrimento(inizio tratto plastico)		(MPa) (cm ³)
P _{lim} V _{lim}	pressione limite volume limite $(V_{lim} = V_i + 2*V_0)$	24,89 988,00	(MPa) (cm³)

B.11.1 TERRENI COESIVI

COESIONE NON DRENATA

cupvalore di picco#N/D(MPa)curvalore residuo#N/D(MPa)#N/D#N/D

STATO DI SFORZO "IN SITU"

k_o coefficiente di spinta a riposo 0,47 (-)

PARAMETRI ELASTICI

ν	coefficiente di Poisson	0,33	(-)
G _i	modulo di taglio	0	(MPa)
E _i	modulo pressiometrico	1	(MPa)
G _{sr}	modulo di taglio di scarico e ricarico		(MPa)
E _{sr}	modulo pressiometrico di scarico e ricarico		(MPa)

N.B. I valori dei parametri di resistenza e deformabilità dipendono fortemente dai valori di Vo,Po e Vf,Pf definiti dall'utente. Si ritiene più corretto che l'utente esegua una valutazione dei parametri stessi scegliendo non una sola coppia di valori di Vo,Po e Vf,Pf, bensì un campo di variazione degli stessi.

B.11.1 TERRENI COESIVI

DATI (GENERALI		
Z _s	Profondità sondaggio da p.c.	20,00	(m)
\mathbf{Z}_{w}	Profondità falda da p.c.	5,00	(m)
γ ₁	Peso di volume totale terreno sopra falda	19,0	(kN/m ³)
γ ₂	Peso di volume totale terreno sotto falda	19,0	(kN/m ³)
Ta	Temperatura ambiente	30	(°C)

20

1GT

(°C)

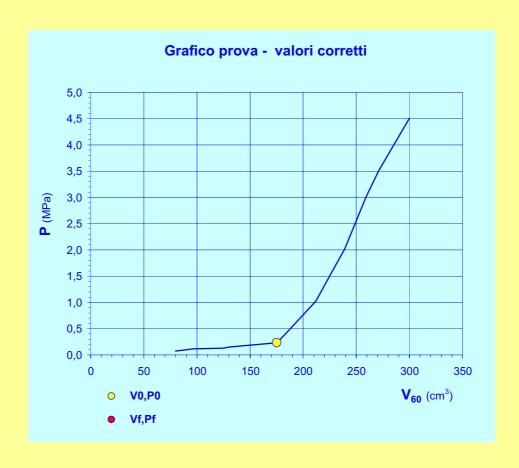
SONDA Guaina

 $T_{\rm f}$

Temperatura foro

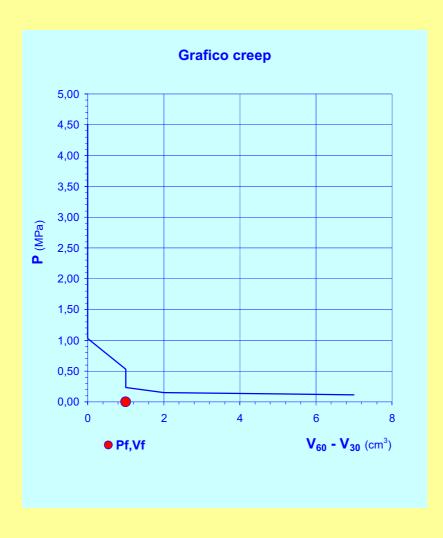
sigla di indentificazione

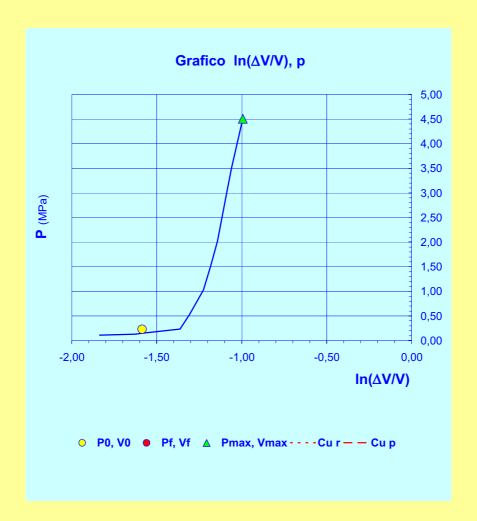
Juania	orgia di machimoazione	_		
	n° cicli espansione		6	
	(si consiglia l'utilizzo di quaine sottoposte ad	<u></u>		<u></u>
	almeno 5 cicli di espansione)			
	Diametro effettivo		60	(mm)
Tipo tubi	cini		lunghi	
H _m	Altezza manometro lettura da p.c.		0,60	(m)
H _c	Altezza cavità	_	0,80	(m)
Z _p	Distanza centro sonda da p.c.(profondità di prova)		10,00	(m)
Perforaz	ione cavità			
	Metodo di perforazione	carotie	re semplice	Э
	Utilizzo fanghi (S/N)		N	
ф	Diametro		66	(mm)
γ	Peso specifico liquido circuito di misura		9,81	(kN/m ³)
V_i	Volume sonda a pressione atmosferica		510	(cm ³)
	Dati obbligatori			


B.11.1 TERRENI COESIVI

LETTURE CORRETTE

Р	V ₆₀	P+P _w	Pc	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(MPa)	(cm ³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
0,00	80,00	0,10	0,03	0,22	0,08	79,78		
0,05	97,0	0,15	0,04	0,33	0,11	96,67	10,34	7,00
0,08	125,0	0,18	0,05	0,37	0,13	124,63	8,02	5,00
0,10	132,0	0,20	0,05	0,43	0,15	131,57	7,60	2,00
0,20	176,0	0,30	0,07	0,67	0,23	175,33	5,70	1,00
0,50	191,0	0,60	0,07	1,53	0,53	189,47	5,28	1,00
1,00	215,0	1,10	0,08	2,96	1,03	212,04	4,72	0,00
1,50	230,0	1,60	0,08	4,40	1,52	225,60	4,43	0,00
2,00	245,0	2,10	0,08	5,83	2,02	239,17	4,18	0,00
3,00	268,0	3,10	0,09	8,70	3,01	259,30	3,86	0,00
3,50	281,0	3,60	0,10	10,13	3,51	270,87	3,69	0,00
4,50	313,0	4,60	0,10	13,00	4,50	300,00	3,33	0,00


Legenda	egenda				
P	pressione imposta in fase di prova				
V ₆₀	lettura volume a 60 sec				
P _w	pressione fluido circuito misura (da manometro a centro sonda)				
Pc	correzione pressione, valore da ricavare dalla prova di taratura della guaina				
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$				
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini				
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_c$				
V _{inv}	inverso del volume V inv = 1000/V 60,cor				
Creep	$= V_{60} - V_{30}$				


B.11.1 TERRENI COESIVI

PARAMETRI CARATTERISTICI

N.B.	Inserire i valori di P_0 , V_0 e P_f , V_f sulla base dei grafici p , $V60$ p , facendo riferimento alle indicazioni del foglio "Descriz_elaborazione"	log(∆R/R ₀) e	p,Creep,
	I valori numerici devono essere ricavati dalla tabella nel foglio "Letture_ essere punti della curva	corrette" , ovve	ero devono
P_0	pressione inizial (termine ricompressione - inizio tratto elastico)	0,23	(MPa)
V_0	volume iniziale (termine ricompressione - inizio tratto elastico)	175,00	(cm ³)
P_f	pressione di scorrimento(inizio tratto plastico)		(MPa)
V_f	volume di scorrimento(inizio tratto plastico)		(cm ³)
P _{lim}	pressione limite	10,53	(MPa)
V_{lim}	volume limite $(V_{lim} = V_i + 2^*V_0)$	860,00	(cm ³)

B.11.1 TERRENI COESIVI

COESIONE NON DRENATA

cup	valore di picco	#N/D	(MPa)
cu _r	valore residuo	#N/D	(MPa)
#N/D	#N/D		

STATO DI SFORZO "IN SITU"

k _o	coefficiente di spinta a riposo	1,28	(-)	

PARAMETRI ELASTICI

ν	coefficiente di Poisson	0,33	(-)
Gi	modulo di taglio	1	(MPa)
E_i	modulo pressiometrico	2	(MPa)
G _{sr}	modulo di taglio di scarico e ricarico		(MPa)
E _{sr}	modulo pressiometrico di scarico e ricarico		(MPa)

N.B. I valori dei parametri di resistenza e deformabilità dipendono fortemente dai valori di Vo,Po e Vf,Pf definiti dall'utente. Si ritiene più corretto che l'utente esegua una valutazione dei parametri stessi scegliendo non una sola coppia di valori di Vo,Po e Vf,Pf, bensì un campo di variazione degli stessi.

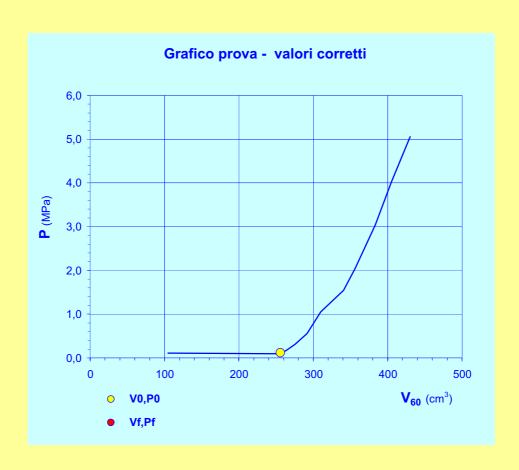
B.11.1 TERRENI COESIVI

DATI GENERALI

Z s	Profondità sondaggio da p.c.		(m)
Z_{w}	Profondità falda da p.c.	16,00	(m)
γ ₁	Peso di volume totale terreno sopra falda	19,0	(kN/m ³)
γ ₂	Peso di volume totale terreno sotto falda	19,0	(kN/m ³)
T_a	Temperatura ambiente	30	(°C)
T_f	Temperatura foro	20	(°C)

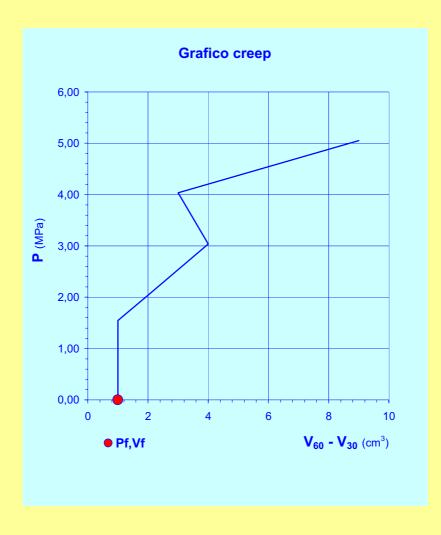
Guaina	sigla di indentificazione n° cicli espansione (si consiglia l'utilizzo di guaine sottoposte ad almeno 5 cicli di espansione)	1 5	
	Diametro effettivo	60	(mm)
Tipo tub	icini	lunghi	
H _m	Altezza manometro lettura da p.c.	0,60	(m)
H _c	Altezza cavità	0,80	(m)
Z p	Distanza centro sonda da p.c.(profondità di prova)	15,00	(m)
erforaz	zione cavità		
	Metodo di perforazione	carotiere semplice	e
	Utilizzo fanghi (S/N)	N	
)	Diametro	66	(mm)
,	Peso specifico liquido circuito di misura	9,81	(kN/m ³
√ i	Volume sonda a pressione atmosferica	510	(cm ³)

Dati obbligatori


B.11.1 TERRENI COESIVI

LETTURE CORRETTE

Р	V ₆₀	P+P _w	Pc	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(MPa)	(cm ³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
0,00	105,00	0,15	0,04	0,33	0,11	104,67		
0,03	251,0	0,18	0,09	0,28	0,10	250,72	3,99	1,00
0,05	257,0	0,20	0,09	0,33	0,12	256,67	3,90	1,00
0,10	263,0	0,25	0,09	0,47	0,16	262,53	3,81	1,00
0,25	276,0	0,40	0,09	0,89	0,31	275,11	3,63	1,00
0,50	293,0	0,65	0,10	1,60	0,55	291,40	3,43	1,00
1,00	313,0	1,15	0,10	3,03	1,05	309,97	3,23	1,00
1,50	345,0	1,65	0,11	4,46	1,55	340,54	2,94	1,00
2,00	362,0	2,15	0,11	5,89	2,04	356,11	2,81	2,00
3,00	392,0	3,15	0,12	8,77	3,04	383,23	2,61	4,00
4,00	417,0	4,15	0,12	11,64	4,03	405,36	2,47	3,00
5,00	445,0	5,15	0,10	14,58	5,05	430,42	2,32	9,00


Legenda	Legenda			
P	pressione imposta in fase di prova			
V ₆₀	lettura volume a 60 sec			
P _w	pressione fluido circuito misura (da manometro a centro sonda)			
Pc	correzione pressione, valore da ricavare dalla prova di taratura della guaina			
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$			
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini			
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_c$			
V _{inv}	inverso del volume V inv = 1000/V 60,cor			
Creep	$= V_{60} - V_{30}$			

B.11.1 TERRENI COESIVI

PARAMETRI CARATTERISTICI

1740 MILTIN O740 (TERCOTIO)			
N.B.	Inserire i valori di P_0 , V_0 e P_f , V_f sulla base dei grafici p , $V60$ p facendo riferimento alle indicazioni del foglio "Descriz_elaborazione" I valori numerici devono essere ricavati dalla tabella nel foglio "Letture essere punti della curva		
P ₀ V ₀ P _f V _f	pressione inizial (termine ricompressione - inizio tratto elastico) volume inizial (termine ricompressione - inizio tratto elastico) pressione di scorrimento(inizio tratto plastico) volume di scorrimento(inizio tratto plastico)	0,12 256,00	(MPa) (cm³) (MPa) (cm³)
P _{lim} V _{lim}	pressione limite volume limite ($V_{lim} = V_i + 2*V_0$)	14,60 1022,00	(MPa) (cm³)

B.11.1 TERRENI COESIVI

COESIONE NON DRENATA

STATO DI SFORZO "IN SITU"

k_o coefficiente di spinta a riposo 0,42 (-)

PARAMETRI ELASTICI

ν	coefficiente di Poisson	0,33	(-)
G _i	modulo di taglio	0	(MPa)
E,	modulo pressiometrico	1	(MPa)
G _{sr}	modulo di taglio di scarico e ricarico		(MPa)
Esr	modulo pressiometrico di scarico e ricarico		(MPa)

N.B. I valori dei parametri di resistenza e deformabilità dipendono fortemente dai valori di Vo,Po e Vf,Pf definiti dall'utente. Si ritiene più corretto che l'utente esegua una valutazione dei parametri stessi scegliendo non una sola coppia di valori di Vo,Po e Vf,Pf, bensì un campo di variazione degli stessi.

B.11.1 TERRENI COESIVI

DATI GENERALI

Z s	Profondità sondaggio da p.c.		(m)
Z_{w}	Profondità falda da p.c.	6,00	(m)
γ ₁	Peso di volume totale terreno sopra falda	19,0	(kN/m ³)
γ ₂	Peso di volume totale terreno sotto falda	19,0	(kN/m ³)
T _a	Temperatura ambiente	30	(°C)
$T_{\rm f}$	Temperatura foro	20	(°C)

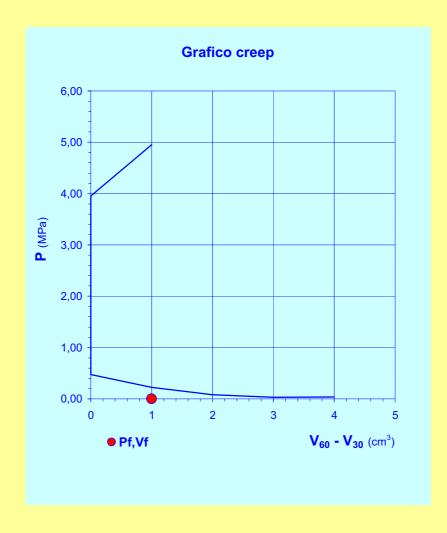
Guaina	sigla di indentificazione	1	
	n° cicli espansione	5	
	(si consiglia l'utilizzo di guaine sottoposte ad		
	almeno 5 cicli di espansione)		
	Diametro effettivo	60	_(mm)
Tipo tub	icini	lunghi	
H _m	Altezza manometro lettura da p.c.	0,60	(m)
H _c	Altezza cavità	0,80	(m)
<mark>Z</mark> p	Distanza centro sonda da p.c.(profondità di prova)	5,00	(m)
Perforaz	ione cavità		
	Metodo di perforazione	carotiere semplic	е
	Utilizzo fanghi (S/N)	N	
)	Diametro	66	(mm)
/	Peso specifico liquido circuito di misura	9,81	(kN/m ³
V _i	Volume sonda a pressione atmosferica	510	(cm ³)

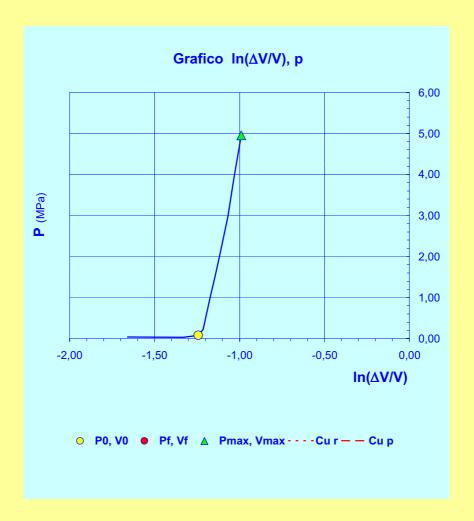
Dati obbligatori

B.11.1 TERRENI COESIVI

LETTURE CORRETTE

Р	V ₆₀	P+P _w	Pc	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(MPa)	(cm ³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
0,00	110,00	0,05	0,04	0,04	0,01	109,96		
0,03	120,0	0,08	0,05	0,11	0,04	119,89	8,34	4,00
0,05	183,0	0,10	0,07	0,09	0,03	182,91	5,47	3,00
0,10	207,0	0,15	0,08	0,23	0,08	206,77	4,84	2,00
0,25	216,0	0,30	0,08	0,66	0,23	215,34	4,64	1,00
0,50	221,0	0,55	0,08	1,38	0,48	219,62	4,55	0,00
1,00	231,0	1,05	0,08	2,81	0,98	228,19	4,38	0,00
1,50	242,0	1,55	0,08	4,25	1,47	237,75	4,21	0,00
2,00	253,0	2,05	0,09	5,68	1,97	247,32	4,04	0,00
3,00	275,0	3,05	0,09	8,55	2,96	266,45	3,75	0,00
4,00	294,0	4,05	0,10	11,42	3,96	282,58	3,54	0,00
5,00	316,0	5,05	0,10	14,30	4,95	301,70	3,31	1,00


Legenda	1						
P	pressione imposta in fase di prova						
V ₆₀	lettura volume a 60 sec						
P _w	pressione fluido circuito misura (da manometro a centro sonda)						
Pc	correzione pressione, valore da ricavare dalla prova di taratura della guaina						
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$						
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini						
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_c$						
V _{inv}	inverso del volume V inv = 1000/V 60,cor						
Creep	$= V_{60} - V_{30}$						


B.11.1 TERRENI COESIVI

PARAMETRI CARATTERISTICI

N.B.	Inserire i valori di P_0 , V_0 e P_f , V_f sulla base dei grafici p , $V60$ p , $I60$ facendo riferimento alle indicazioni del foglio "Descriz_elaborazione" I valori numerici devono essere ricavati dalla tabella nel foglio "Letture_co essere punti della curva		
P ₀ V ₀ P _f V _f P _{lim} V _{lim}	pressione inizial (termine ricompressione - inizio tratto elastico) volume inizial (termine ricompressione - inizio tratto elastico) pressione di scorrimento (inizio tratto plastico) volume di scorrimento (inizio tratto plastico) pressione limite volume limite (V _{lim} = V _i + 2*V ₀)	0,08 206,00 14,89 922,00	(MPa) (cm³) (MPa) (cm³) (MPa) (cm³)

B.11.1 TERRENI COESIVI

COESIONE NON DRENATA

 $\begin{array}{ccc} \mathbf{C}\mathbf{U}_{\mathbf{p}} & \text{valore di picco} & \#\text{N/D} & (\text{MPa}) \\ \mathbf{C}\mathbf{U}_{\mathbf{r}} & \text{valore residuo} & \#\text{N/D} & (\text{MPa}) \\ \#\text{N/D} & \#\text{N/D} & & & \end{array}$

STATO DI SFORZO "IN SITU"

k_o coefficiente di spinta a riposo 0,84 (-)

PARAMETRI ELASTICI

ν	coefficiente di Poisson	0,33	(-)
Gi	modulo di taglio	0	(MPa)
E _i	modulo pressiometrico	1	(MPa)
G_{sr}	modulo di taglio di scarico e ricarico	***************************************	(MPa)
E _{sr}	modulo pressiometrico di scarico e ricarico		(MPa)

N.B. I valori dei parametri di resistenza e deformabilità dipendono fortemente dai valori di Vo,Po e Vf,Pf definiti dall'utente. Si ritiene più corretto che l'utente esegua una valutazione dei parametri stessi scegliendo non una sola coppia di valori di Vo,Po e Vf,Pf, bensì un campo di variazione degli stessi.

B.11.1 TERRENI COESIVI

DATI GENERALI

Z s	Profondità sondaggio da p.c.		(m)
Z_{w}	Profondità falda da p.c.	11,00	(m)
γ ₁	Peso di volume totale terreno sopra falda	19,0	(kN/m ³)
γ ₂	Peso di volume totale terreno sotto falda	19,0	(kN/m ³)
T_a	Temperatura ambiente	30	(°C)
T_f	Temperatura foro	20	(°C)

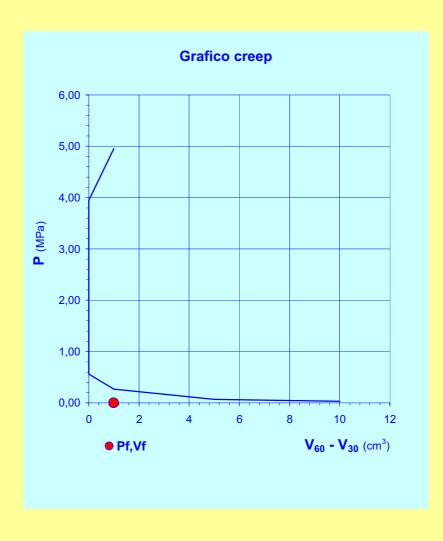
sottoposte ad		1 5 60 lunghi 0,60	(mm) (m)
p.c.		lunghi	
p.c.			(m)
p.c.		0,60	(m)
		0,80	(m)
.(profondità di p	prova)	5,00	(m)
	car	otiere semplic	е
		N	
		66	(mm)
di misura		9,81	(kN/m ³)
mosferica		510	(cm ³)
	odi misura mosferica	di misura	66 o di misura 9,81

Dati obbligatori


B.11.1 TERRENI COESIVI

LETTURE CORRETTE

Р	V ₆₀	P+P _w	P _c	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(MPa)	(cm ³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
0,00	90,00	0,05	0,03	0,07	0,02	89,93		
0,05	189,0	0,10	0,07	0,09	0,03	188,91	5,29	10,00
0,10	245,0	0,15	0,08	0,20	0,07	244,80	4,09	5,00
0,20	253,0	0,25	0,09	0,49	0,17	252,51	3,96	3,00
0,30	260,0	0,35	0,09	0,77	0,27	259,23	3,86	1,00
0,60	270,0	0,65	0,09	1,63	0,56	268,37	3,73	0,00
1,30	290,0	1,35	0,10	3,63	1,26	286,37	3,49	0,00
2,00	305,0	2,05	0,10	5,64	1,95	299,36	3,34	0,00
2,50	315,0	2,55	0,10	7,08	2,45	307,92	3,25	0,00
3,00	325,0	3,05	0,10	8,52	2,95	316,48	3,16	0,00
4,00	341,0	4,05	0,11	11,39	3,95	329,61	3,03	0,00
5,00	363,0	5,05	0,10	14,30	4,95	348,70	2,87	1,00


Legenda	1						
P	pressione imposta in fase di prova						
V ₆₀	lettura volume a 60 sec						
P _w	pressione fluido circuito misura (da manometro a centro sonda)						
Pc	correzione pressione, valore da ricavare dalla prova di taratura della guaina						
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$						
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini						
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_c$						
V _{inv}	inverso del volume V inv = 1000/V 60,cor						
Creep	$= V_{60} - V_{30}$						

B.11.1 TERRENI COESIVI

PARAMETRI CARATTERISTICI

N.B.	Inserire i valori di P_0 , V_0 e P_f , V_f sulla base dei grafici p , $V60$ p , $V60$ facendo riferimento alle indicazioni del foglio "Descriz_elaborazione" I valori numerici devono essere ricavati dalla tabella nel foglio "Letture_coessere punti della curva		
P ₀ V ₀ P _f V _f P _{lim} V _{lim}	pressione inizial (termine ricompressione - inizio tratto elastico) volume inizial (termine ricompressione - inizio tratto elastico) pressione di scorrimento (inizio tratto plastico) volume di scorrimento (inizio tratto plastico) pressione limite volume limite (V _{lim} = V _i + 2*V ₀)	0,07 244,00 16,27 998,00	(MPa) (cm³) (MPa) (cm³) (MPa) (cm³)

B.11.1 TERRENI COESIVI

COESIONE NON DRENATA

 $\begin{array}{ccc} \mathbf{C}\mathbf{U}_{\mathbf{p}} & \text{valore di picco} & \#\text{N/D} & (\text{MPa}) \\ \mathbf{C}\mathbf{U}_{\mathbf{r}} & \text{valore residuo} & \#\text{N/D} & (\text{MPa}) \\ \#\text{N/D} & \#\text{N/D} & & & \end{array}$

STATO DI SFORZO "IN SITU"

k_o coefficiente di spinta a riposo 0,74 (-)

PARAMETRI ELASTICI

ν	coefficiente di Poisson	0,33	(-)
G _i	modulo di taglio	0	(MPa)
E _i	modulo pressiometrico	0	(MPa)
G _{sr}	modulo di taglio di scarico e ricarico		(MPa)
E _{sr}	modulo pressiometrico di scarico e ricarico		(MPa)

N.B. I valori dei parametri di resistenza e deformabilità dipendono fortemente dai valori di Vo,Po e Vf,Pf definiti dall'utente. Si ritiene più corretto che l'utente esegua una valutazione dei parametri stessi scegliendo non una sola coppia di valori di Vo,Po e Vf,Pf, bensì un campo di variazione degli stessi.

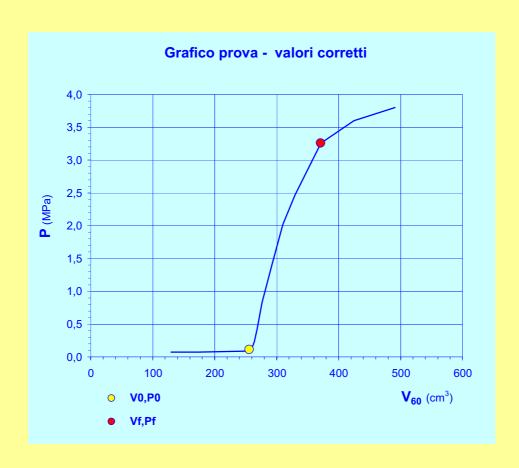
B.11.1 TERRENI COESIVI

DATI GENERALI

Z s	Profondità sondaggio da p.c.		(m)
Z_{w}	Profondità falda da p.c.	13,00	(m)
γ ₁	Peso di volume totale terreno sopra falda	19,0	(kN/m ³)
γ ₂	Peso di volume totale terreno sotto falda	19,0	(kN/m ³)
T_a	Temperatura ambiente	30	(°C)
T_f	Temperatura foro	20	(°C)

Guaina	sigla di indentificazione	1	
	n° cicli espansione	5	
	(si consiglia l'utilizzo di guaine sottoposte ad	-	
	almeno 5 cicli di espansione)	-	
	Diametro effettivo	60	(mm)
Γi <mark>po t</mark> ub	icini	lunghi	
l _m	Altezza manometro lettura da p.c.	0,60	(m)
H _c	Altezza cavità	0,80	(m)
Z p	Distanza centro sonda da p.c.(profondità di prova)	12,00	(m)
erforaz	zione cavità		
	Metodo di perforazione	carotiere semplic	е
	Utilizzo fanghi (S/N)	N	
)	Diametro	66	(mm)
,	Peso specifico liquido circuito di misura	9,81	(kN/m ³
/ _i	Volume sonda a pressione atmosferica	510	(cm ³)

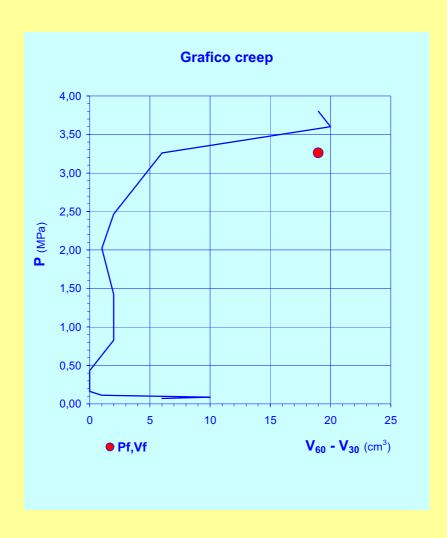
Dati obbligatori


B.11.1 TERRENI COESIVI

LETTURE CORRETTE

Р	V ₆₀	P+P _w	Pc	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(MPa)	(cm ³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
0,00	130,00	0,12	0,05	0,21	0,07	129,79		
0,02	174,0	0,14	0,07	0,21	0,07	173,79	5,75	6,00
0,05	250,0	0,17	0,09	0,25	0,09	249,75	4,00	10,00
0,08	257,0	0,20	0,09	0,32	0,11	256,68	3,90	1,00
0,13	262,0	0,25	0,09	0,47	0,16	261,53	3,82	0,00
0,20	265,0	0,32	0,09	0,67	0,23	264,33	3,78	0,00
0,40	270,0	0,52	0,09	1,25	0,43	268,75	3,72	0,00
0,80	279,0	0,92	0,09	2,39	0,83	276,61	3,62	2,00
1,40	297,0	1,52	0,10	4,11	1,42	292,89	3,41	2,00
2,00	316,0	2,12	0,10	5,83	2,02	310,17	3,22	1,00
2,45	337,0	2,57	0,11	7,12	2,47	329,88	3,03	2,00
3,25	381,0	3,37	0,11	9,41	3,26	371,59	2,69	6,00
3,60	435,0	3,72	0,12	10,39	3,60	424,61	2,36	20,00
3,80	502,0	3,92	0,13	10,96	3,80	491,04	2,04	19,00

Legenda	
P	pressione imposta in fase di prova
V ₆₀	lettura volume a 60 sec
P _w	pressione fluido circuito misura (da manometro a centro sonda)
Pc	correzione pressione, valore da ricavare dalla prova di taratura della guaina
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_c$
V _{inv}	inverso del volume V inv = 1000/V 60,cor
Creep	$= V_{60} - V_{30}$


B.11.1 TERRENI COESIVI



PARAMETRI CARATTERISTICI

N.B.	Inserire i valori di P_0 , V_0 e P_f , V_f sulla base dei grafici p , V_0 0 p , $Iog(\Delta R/R_0)$ e p , Creep, facendo riferimento alle indicazioni del foglio "Descriz_elaborazione"
	I valori numerici devono essere ricavati dalla tabella nel foglio "Letture_corrette" , ovvero devono essere punti della curva

P_0	pressione inizial (termine ricompressione - inizio tratto elastico)	0,11	(MPa)
V_0	volume inizial (termine ricompressione - inizio tratto elastico)	256,00	(cm ³)
P_{f}	pressione di scorrimento(inizio tratto plastico)	3,26	(MPa)
V_f	volume di scorrimento(inizio tratto plastico)	371,00	(cm ³)
P _{lim}	pressione limite	4,45	(MPa)
V_{lim}	volume limite $(V_{lim} = V_i + 2*V_0)$	1022,00	(cm ³)

B.11.1 TERRENI COESIVI

COESIONE NON DRENATA

cup	valore di picco	12,7	(MPa)
cur	valore residuo	3,6	(MPa)

STATO DI SFORZO "IN SITU"

k _o	coefficiente di spinta a riposo	0,48 (-	-)

PARAMETRI ELASTICI

ν	coefficiente di Poisson	0,33	(-)
G _i	modulo di taglio	23	(MPa)
E _i	modulo pressiometrico	60	(MPa)
G _{sr}	modulo di taglio di scarico e ricarico		(MPa)
E _{sr}	modulo pressiometrico di scarico e ricarico		(MPa)

N.B. I valori dei parametri di resistenza e deformabilità dipendono fortemente dai valori di Vo,Po e Vf,Pf definiti dall'utente. Si ritiene più corretto che l'utente esegua una valutazione dei parametri stessi scegliendo non una sola coppia di valori di Vo,Po e Vf,Pf, bensì un campo di variazione degli stessi.

B.11.2. TERRENI NON COESIVI

DATI GENERALI

Z s	Profondità sondaggio da p.c.	20,00	(m)
Z_{w}	Profondità falda da p.c.	14,50	(m)
γ ₁	Peso di volume totale terreno sopra falda	19,00	(kN/m ³)
γ ₂	Peso di volume totale terreno sotto falda	19,00	(kN/m ³)
T _a	Temperatura ambiente	20	(°C)
$T_{\rm f}$	Temperatura foro	20	(°C)

SONDA

Guaina	N	1	
	n° cicli espansione (si consiglia l'utilizzo di guaine sottoposte ad almeno 5 cicli di espansione)	5	
	Diametro effettivo	60	(mm)
ipo tuk	picini	lunghi	
l _m	Altezza manometro lettura da p.c.	0,60	(m)
l _c	Altezza cavità	0,80	(m)
D C	Distanza centro sonda da p.c.(profondità di prova)	9,20	(m)
•	zione cavità		<u></u>
	Metodo di perforazione carot	iere semplic	е
	Utilizzo fanghi (S/N)	N	
	Diametro	66	(mm)
	Peso specifico liquido circuito di misura	9,81	(kN/m ³)
' .	Volume sonda a pressione atmosferica	495	(cm ³)

Dati obbligatori

B.11.2. TERRENI NON COESIVI

LETTURE CORRETTE

Р	V ₆₀	P+P _w	Pc	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(MPa)	(cm ³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
0,00	105,00	0,10	0,04	0,12	0,06	104,88		
0,02	126,0	0,12	0,05	0,14	0,07	125,86	7,95	0,00
0,03	140,0	0,13	0,06	0,15	0,07	139,85	7,15	0,00
0,05	144,0	0,15	0,06	0,18	0,09	143,82	6,95	0,00
0,11	154,0	0,21	0,06	0,30	0,14	153,70	6,51	0,00
0,20	159,0	0,30	0,07	0,48	0,23	158,52	6,31	0,00
0,41	165,0	0,51	0,07	0,92	0,44	164,08	6,09	0,00
0,71	171,0	0,81	0,07	1,55	0,74	169,45	5,90	0,00
1,30	186,0	1,40	0,07	2,79	1,32	183,21	5,46	0,00
1,90	225,0	2,00	0,08	4,04	1,92	220,96	4,53	0,00
2,00	256,0	2,10	0,09	4,24	2,01	251,76	3,97	6,00
2,10	312,0	2,20	0,10	4,42	2,09	307,58	3,25	12,00
2,20	471,0	2,30	0,13	4,58	2,17	466,42	2,14	21,00

Legenda						
P	pressione imposta in fase di prova					
V ₆₀	lettura volume a 60 sec					
P _w	pressione fluido circuito misura (da manometro a centro sonda)					
P _c	correzione pressione, valore da ricavare dalla prova di taratura della guaina					
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$					
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini					
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_c$					
V _{inv}	inverso del volume V inv = 1000/V 60,cor					
Creep	$= V_{60} - V_{30}$					

B.11.2. TERRENI NON COESIVI

PARAMETRI CARATTERISTICI

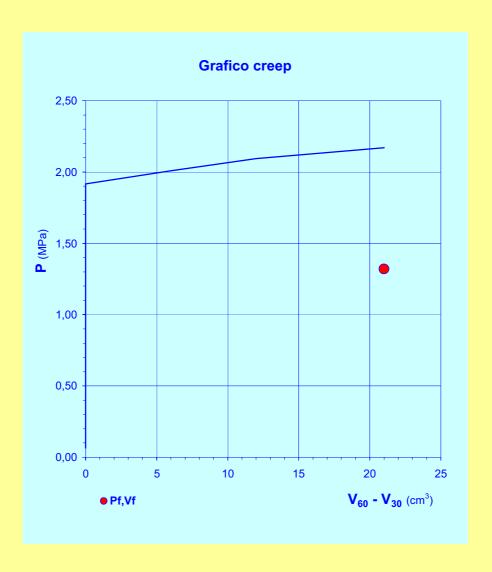
N.B. Inserire i valori di P₀, V₀ e Pƒ, Vƒ sulla base dei grafici p, V60 p, log(△R/R₀) e p,Creep, facendo riferimento alle indicazioni del foglio "Descriz_elaborazione"

I valori numerici **devono** essere ricavati dalla tabella nel foglio "Letture_corrette" , ovvero devono essere punti della curva

P_0	pressione iniziale (termine ricompressione - inizio tratto elastico)
V_0	volume iniziale (termine ricompressione - inizio tratto elastico)

P_f pressione di scorrimento (inizio tratto plastico)

V_f volume di scorrimento (inizio tratto plastico)


P_{lim} pressione limite

 V_{lim} volume limite $V_{lim} = V_i + 2*V_0$

0,14	(MPa)
153.00	(cm ³)

B.11.2. TERRENI NON COESIVI

B.11.2. TERRENI NON COESIVI

PARAMETRI ELASTICI

ν	coefficiente di Poisson	0,3	(-)
G _i	modulo di taglio	26,08	(MPa)
E _i	modulo pressiometrico	67,80	(MPa)
G _{sr}	modulo di taglio di scarico e ricarico		(MPa)
E _{sr}	modulo pressiometrico di scarico e ricarico		(MPa)

ANGOLO DI ATTRITO E DILATANZA

S	pendenza tratto finale curva $log(p-y), log(\epsilon_r)$	0,25	(-)
φ _{cv} "	angolo di attrito a volume costante	25	(°)
φ'	angolo di attrito	21,2	(°)
Ψ	angolo di dilatanza	-4,1	(°)

	1	
φ _{cv} "	30°	sabbia fine uniforme
	34°	sabbia fine ben gradata
	34°	sabbia media uniforme
	37°	sabbia media ben gradata
	37°	sabbia grossa uniforme
	40°	ghiaia sabbioso-limosa ben gradata

B.11.2. TERRENI NON COESIVI

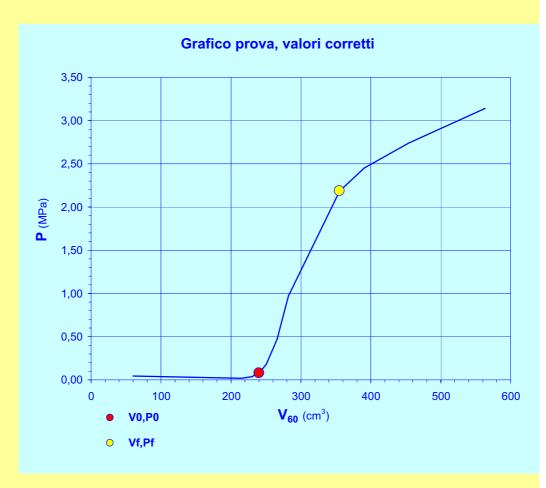
DATI GENERALI

Z s	Profondità sondaggio da p.c.	20,00	(m)
Z_{w}	Profondità falda da p.c.	14,50	(m)
γ ₁	Peso di volume totale terreno sopra falda	19,00	(kN/m ³)
γ ₂	Peso di volume totale terreno sotto falda	19,00	(kN/m ³)
T _a	Temperatura ambiente	20	(°C)
$T_{\rm f}$	Temperatura foro	20	(°C)

SONDA

Guaina	N n° cicli espansione (si consiglia l'utilizzo di guaine sottoposte ad almeno 5 cicli di espansione)	1 5	
	Diametro effettivo	60	(mm)
Tipo tuk	picini	lunghi	
H _m	Altezza manometro lettura da p.c.	0,60	(m)
H _c	Altezza cavità	0,80	(m)
7 -p	Distanza centro sonda da p.c.(profondità di prova)	6,20	(m)
•	zione cavità	···	
	Metodo di perforazione carot	iere semplic	е
	Utilizzo fanghi (S/N)	N	
)	Diametro	66	(mm)
•	Peso specifico liquido circuito di misura	9,81	(kN/m ³
/ ;	Volume sonda a pressione atmosferica	495	(cm ³)

Dati obbligatori


B.11.2. TERRENI NON COESIVI

LETTURE CORRETTE

Р	V ₆₀	P+P _w	Pc	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(MPa)	(cm³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
0,00	60,00	0,07	0,02	0,09	0,04	59,91		
0,03	215,0	0,10	0,08	0,04	0,02	214,96	4,65	20,00
0,05	230,0	0,12	0,08	0,08	0,04	229,92	4,35	1,00
0,10	241,0	0,17	0,08	0,18	0,08	240,82	4,15	0,00
0,20	251,0	0,27	0,09	0,38	0,18	250,62	3,99	0,00
0,42	263,0	0,49	0,09	0,84	0,40	262,16	3,81	0,00
0,50	267,0	0,57	0,09	1,00	0,48	266,00	3,76	0,00
0,70	274,0	0,77	0,09	1,42	0,67	272,58	3,67	0,00
1,00	284,0	1,07	0,10	2,05	0,97	281,95	3,55	0,00
2,23	360,0	2,30	0,11	4,61	2,19	355,39	2,81	4,00
2,50	396,0	2,57	0,12	5,17	2,45	390,83	2,56	4,00
2,80	460,0	2,87	0,13	5,78	2,74	454,22	2,20	10,00
3,20	570,0	3,27	0,13	6,63	3,14	563,37	1,78	20,00

Legenda	Legenda						
P	pressione imposta in fase di prova						
V ₆₀	lettura volume a 60 sec						
P _w	pressione fluido circuito misura (da manometro a centro sonda)						
Pc	correzione pressione, valore da ricavare dalla prova di taratura della guaina						
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$						
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini						
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_c$						
V _{inv}	inverso del volume V inv = 1000/V 60,cor						
Creep	$= V_{60} - V_{30}$						

B.11.2. TERRENI NON COESIVI

PARAMETRI CARATTERISTICI

N.B. Inserire i valori di P₀, V₀ e Pf, Vf sulla base dei grafici p, V60 p, log(△R/R₀) e p,Creep, facendo riferimento alle indicazioni del foglio "Descriz_elaborazione"

I valori numerici **devono** essere ricavati dalla tabella nel foglio "Letture_corrette" , ovvero devono essere punti della curva

P₀ pressione iniziale (termine ricompressione - inizio tratto elastico)

V₀ volume iniziale (termine ricompressione - inizio tratto elastico)

P_f pressione di scorrimento (inizio tratto plastico)

V_f volume di scorrimento (inizio tratto plastico)

Plim pressione limite

 V_{lim} volume limite $V_{lim} = V_i + 2*V_0$

0,08 (MPa) 240,00 (cm³)

2,19 (MPa)

355,00 (cm³)

3,85 (MPa) 975,00 (cm³)

B.11.2. TERRENI NON COESIVI

B.11.2. TERRENI NON COESIVI

PARAMETRI ELASTICI

ν	coefficiente di Poisson	0,3	(-)
Gi	modulo di taglio	14,54	(MPa)
E _i	modulo pressiometrico	37,81	(MPa)
G _{sr}	modulo di taglio di scarico e ricarico		(MPa)
E _{sr}	modulo pressiometrico di scarico e ricarico		(MPa)

ANGOLO DI ATTRITO E DILATANZA

S	pendenza tratto finale curva $log(p-y), log(\epsilon_r)$	0,39	(-)
φ _{cv} "	angolo di attrito a volume costante	25	(°)
φ'	angolo di attrito	32,0	(°)
Ψ	angolo di dilatanza	8,0	(°)

	30°	sabbia fine uniforme
	34°	sabbia fine ben gradata
١,,	34°	sabbia media uniforme
ф _{сv} '	37°	sabbia media ben gradata
	37°	sabbia grossa uniforme
	40°	ghiaia sabbioso-limosa ben gradata

B.11.1 TERRENI COESIVI

DATI GENERALI

Z s	Profondità sondaggio da p.c.		(m)
Z_{w}	Profondità falda da p.c.	4,00	(m)
γ ₁	Peso di volume totale terreno sopra falda	19,0	(kN/m ³)
γ ₂	Peso di volume totale terreno sotto falda	19,0	(kN/m ³)
T _a	Temperatura ambiente	30	(°C)
T_f	Temperatura foro	20	(°C)

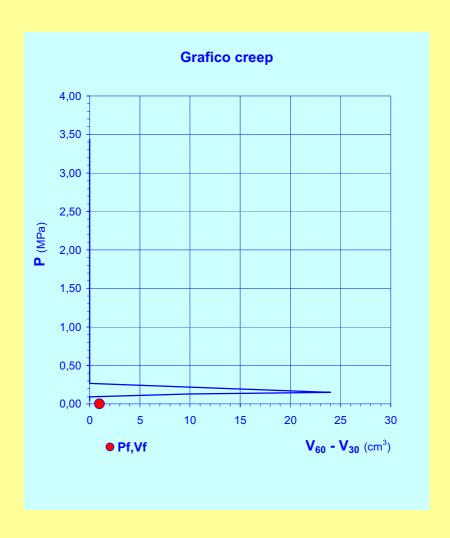
Guaina	sigla di indentificazione	1		
	n° cicli espansione	5		
	(si consiglia l'utilizzo di guaine sottoposte ad			
	almeno 5 cicli di espansione)			
	Diametro effettivo	60	(mm)	
Tipo tubicini		lunghi		
H _m	Altezza manometro lettura da p.c.	0,60	(m)	
H _c	Altezza cavità	0,80	(m)	
Z p	Distanza centro sonda da p.c.(profondità di prova)	3,50	(m)	
Perforaz	ione cavità			
	Metodo di perforazione	carotiere semplic	arotiere semplice	
	Utilizzo fanghi (S/N)	N		
)	Diametro	66	(mm)	
,	Peso specifico liquido circuito di misura	9,81	(kN/m ³	
/ ;	Volume sonda a pressione atmosferica	510	(cm ³)	

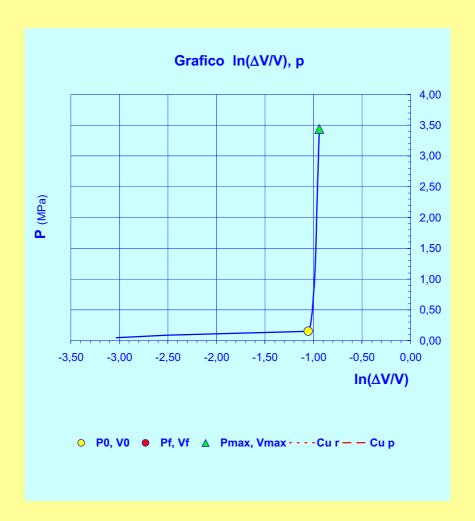
Dati obbligatori

B.11.1 TERRENI COESIVI

LETTURE CORRETTE

Р	V ₆₀	P+P _w	Pc	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(MPa)	(cm ³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
0,00	10,00	0,04	0,02	0,07	0,02	9,93		
0,03	26,0	0,07	0,02	0,13	0,04	25,87	38,65	0,00
0,08	46,0	0,12	0,02	0,26	0,09	45,74	21,86	0,00
0,15	140,0	0,19	0,06	0,37	0,13	139,63	7,16	10,00
0,20	274,0	0,24	0,09	0,43	0,15	273,57	3,66	24,00
0,32	285,0	0,36	0,09	0,77	0,27	284,23	3,52	0,00
0,52	293,0	0,56	0,09	1,34	0,47	291,66	3,43	0,00
0,82	300,0	0,86	0,10	2,21	0,76	297,79	3,36	0,00
1,00	304,0	1,04	0,10	2,72	0,94	301,28	3,32	0,00
1,50	312,0	1,54	0,10	4,16	1,44	307,84	3,25	0,00
2,50	324,0	2,54	0,10	7,04	2,44	316,96	3,15	0,00
3,50	337,0	3,54	0,10	9,93	3,44	327,07	3,06	0,00


Legenda					
P	pressione imposta in fase di prova				
V ₆₀	lettura volume a 60 sec				
P _w	pressione fluido circuito misura (da manometro a centro sonda)				
Pc	correzione pressione, valore da ricavare dalla prova di taratura della guaina				
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$				
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini				
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_c$				
V _{inv}	inverso del volume V inv = 1000/V 60,cor				
Creep	$= V_{60} - V_{30}$				


B.11.1 TERRENI COESIVI

PARAMETRI CARATTERISTICI

N.B.	Inserire i valori di P_0 , V_0 e P_f , V_f sulla base dei grafici p , $V60$ p , Ic facendo riferimento alle indicazioni del foglio "Descriz_elaborazione"	g(∆R/R₀) e	p,Creep,
	I valori numerici devono essere ricavati dalla tabella nel foglio "Letture_co essere punti della curva	orrette" , ovve	ro devono
P ₀	pressione inizial (termine ricompressione - inizio tratto elastico)	0,15	(MPa)
V_0	volume iniziale (termine ricompressione - inizio tratto elastico)	273,00	(cm ³)
P_{f}	pressione di scorrimento(inizio tratto plastico)		(MPa)
V_{f}	volume di scorrimento(inizio tratto plastico)		(cm ³)
P_{lim}	pressione limite	25,09	(MPa)
V_{lim}	volume limite $(V_{lim} = V_i + 2^*V_0)$	1056,00	(cm ³)

B.11.1 TERRENI COESIVI

COESIONE NON DRENATA

cup	valore di picco	#N/D	(MPa)
cur	valore residuo	#N/D	(MPa)
#N/D	#N/D		

STATO DI SFORZO "IN SITU"

k _o	coefficiente di spinta a riposo	2,26	(-)

PARAMETRI ELASTICI

ν	coefficiente di Poisson	0,33	(-)
G _i	modulo di taglio	0	(MPa)
E _i	modulo pressiometrico	1	(MPa)
G _{sr}	modulo di taglio di scarico e ricarico		(MPa)
E _{sr}	modulo pressiometrico di scarico e ricarico		(MPa)

N.B. I valori dei parametri di resistenza e deformabilità dipendono fortemente dai valori di Vo,Po e Vf,Pf definiti dall'utente. Si ritiene più corretto che l'utente esegua una valutazione dei parametri stessi scegliendo non una sola coppia di valori di Vo,Po e Vf,Pf, bensì un campo di variazione degli stessi.

B.11.2. TERRENI NON COESIVI

DATI GENERALI

Z s	Profondità sondaggio da p.c.	23,00	(m)
Z_{w}	Profondità falda da p.c.	14,50	(m)
γ ₁	Peso di volume totale terreno sopra falda	19,00	(kN/m ³)
γ ₂	Peso di volume totale terreno sotto falda	19,00	(kN/m ³)
T _a	Temperatura ambiente	20	(°C)
$T_{\rm f}$	Temperatura foro	20	(°C)

Guaina	N	1	
	n° cicli espansione (si consiglia l'utilizzo di guaine sottoposte ad almeno 5 cicli di espansione)	5	
	Diametro effettivo	60	(mm)
ipo tul	picini	lunghi	
l _m	Altezza manometro lettura da p.c.	0,60	(m)
l _c	Altezza cavità	0,80	(m)
, D	Distanza centro sonda da p.c.(profondità di prova)	22,00	(m)
erfora:	zione cavità		
	Metodo di perforazione carot	tiere semplic	е
	Utilizzo fanghi (S/N)	N	
	Diametro	66	(mm)
	Peso specifico liquido circuito di misura	9,81	(kN/m ³)
/ ,	Volume sonda a pressione atmosferica	495	(cm ³)

Dati obbligatori

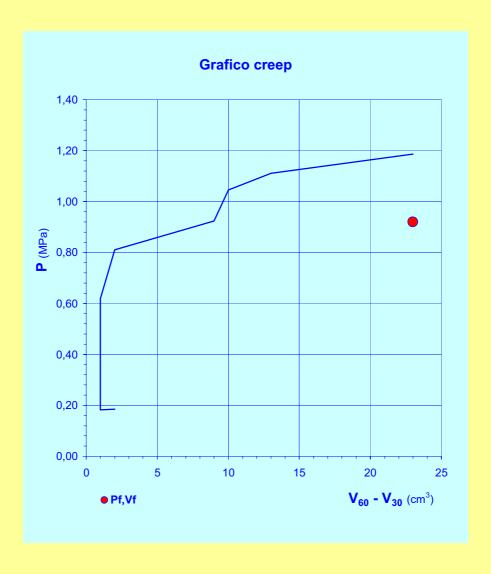
B.11.2. TERRENI NON COESIVI

LETTURE CORRETTE

Р	V ₆₀	P+P _w	Pc	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(MPa)	(cm ³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
0,00	110,00	0,22	0,04	0,38	0,18	109,62		
0,02	139,0	0,24	0,06	0,39	0,19	138,61	7,21	2,00
0,03	166,0	0,25	0,07	0,38	0,18	165,62	6,04	1,00
0,06	197,0	0,28	0,07	0,44	0,21	196,56	5,09	1,00
0,14	234,0	0,36	0,08	0,59	0,28	233,41	4,28	1,00
0,33	278,0	0,55	0,09	0,96	0,46	277,04	3,61	1,00
0,50	314,0	0,72	0,10	1,30	0,62	312,70	3,20	1,00
0,70	366,0	0,92	0,11	1,71	0,81	364,29	2,75	2,00
0,82	409,0	1,04	0,12	1,95	0,92	407,05	2,46	9,00
0,95	475,0	1,17	0,13	2,20	1,05	472,80	2,12	10,00
1,02	551,0	1,24	0,13	2,34	1,11	548,66	1,82	13,00
1,10	635,0	1,32	0,14	2,50	1,19	632,50	1,58	23,00

Legenda	Legenda				
P	pressione imposta in fase di prova				
V ₆₀	lettura volume a 60 sec				
P _w	pressione fluido circuito misura (da manometro a centro sonda)				
Pc	correzione pressione, valore da ricavare dalla prova di taratura della guaina				
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$				
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini				
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_c$				
V _{inv}	inverso del volume V _{inv} = 1000/V _{60,cor}				
Creep	$= V_{60} - V_{30}$				

B.11.2. TERRENI NON COESIVI



PARAMETRI CARATTERISTICI

N.B. Inserire i valori di P₀, V₀ e P₆, V₆ sulla base dei grafici p, V60 p, log(ΔR/R₀) e p,Creep, facendo riferimento alle indicazioni del foglio "Descriz_elaborazione"
I valori numerici devono essere ricavati dalla tabella nel foglio "Letture_corrette", ovvero devono essere punti della punto.

Po	pressione iniziale (termine ricompressione - inizio tratto elastico)	0,21	(MPa)
V_0	volume iniziale (termine ricompressione - inizio tratto elastico)	196,00	(cm ³)
P_{f}	pressione di scorrimento (inizio tratto plastico)	0,92	(MPa)
V_f	volume di scorrimento (inizio tratto plastico)	407,00	(cm ³)
P _{lim}	pressione limite	1,33	(MPa)
V_{lim}	volume limite V _{lim} = V _i + 2*V ₀	887,00	(cm ³)

B.11.2. TERRENI NON COESIVI

B.11.2. TERRENI NON COESIVI

PARAMETRI ELASTICI

ν	coefficiente di Poisson	0,3	(-)
Gi	modulo di taglio	2,68	(MPa)
E _i	modulo pressiometrico	6,97	(MPa)
G _{sr}	modulo di taglio di scarico e ricarico		(MPa)
E _{sr}	modulo pressiometrico di scarico e ricarico		(MPa)

ANGOLO DI ATTRITO E DILATANZA

S	pendenza tratto finale curva $log(p-y), log(\epsilon_r)$	0,40	(-)
φ _{cv} '	angolo di attrito a volume costante	25	(°)
φ'	angolo di attrito	32,7	(°)
Ψ	angolo di dilatanza	8,8	(°)

	30°	sabbia fine uniforme
	34°	sabbia fine ben gradata
φ _{cv} '	34°	sabbia media uniforme
	37°	sabbia media ben gradata
	37°	sabbia grossa uniforme
	40°	ghiaia sabbioso-limosa ben gradata

B.11.1 TERRENI COESIVI

DATI GENERALI

Z s	Profondità sondaggio da p.c.		(m)		
Z_{w}	Profondità falda da p.c.	8,00	(m)		
γ ₁	Peso di volume totale terreno sopra falda	19,0	(kN/m ³)		
γ ₂	Peso di volume totale terreno sotto falda	19,0	(kN/m ³)		
T _a	Temperatura ambiente	30	(°C)		
$T_{\rm f}$	Temperatura foro	20	(°C)		

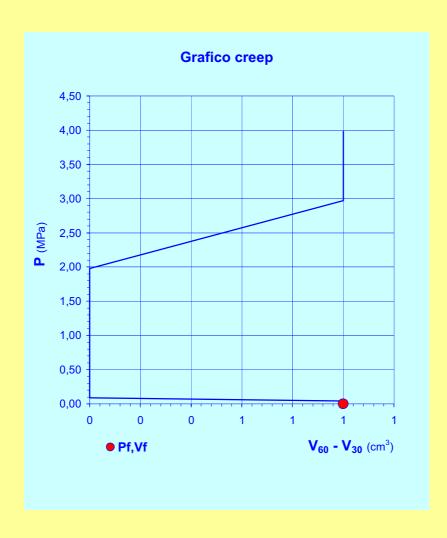
Guaina	sigla di indentificazione	1
	n° cicli espansione	5
	(si consiglia l'utilizzo di guaine sottoposte ad almeno 5 cicli di espansione)	
	Diametro effettivo	60 (mm)
Tipo tub	icini	lunghi
H _m	Altezza manometro lettura da p.c.	0,60 (m)
H _c	Altezza cavità	0,80 (m)
Z p	Distanza centro sonda da p.c.(profondità di prova)	7,40 (m)
Perforaz	ione cavità	
	Metodo di perforazione	carotiere semplice
	Utilizzo fanghi (S/N)	N
)	Diametro	66 (mm)
Y	Peso specifico liquido circuito di misura	9,81 (kN/m ³
V _i	Volume sonda a pressione atmosferica	510 (cm ³)

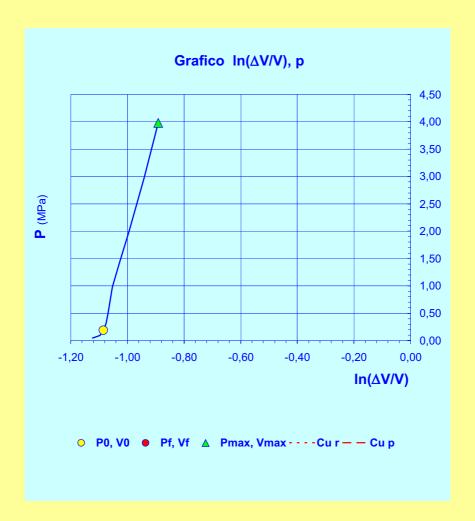
Dati obbligatori

B.11.1 TERRENI COESIVI

LETTURE CORRETTE

Р	V ₆₀	P+P _w	Pc	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(MPa)	(cm ³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
0,00	165,00	0,08	0,07	0,03	0,01	164,97		
0,05	246,0	0,13	0,08	0,13	0,04	245,87	4,07	1,00
0,10	256,0	0,18	0,09	0,26	0,09	255,74	3,91	0,00
0,20	261,0	0,28	0,09	0,55	0,19	260,45	3,84	0,00
0,32	265,0	0,40	0,09	0,89	0,31	264,11	3,79	0,00
0,50	268,0	0,58	0,09	1,41	0,49	266,59	3,75	0,00
1,00	276,0	1,08	0,09	2,84	0,98	273,16	3,66	0,00
1,50	290,0	1,58	0,10	4,27	1,48	285,73	3,50	0,00
2,00	305,0	2,08	0,10	5,71	1,98	299,29	3,34	0,00
3,00	335,0	3,08	0,11	8,58	2,97	326,42	3,06	1,00
4,00	366,0	4,08	0,10	11,48	3,98	354,52	2,82	1,00


Legenda	1					
P	pressione imposta in fase di prova					
V ₆₀	lettura volume a 60 sec					
P _w	pressione fluido circuito misura (da manometro a centro sonda)					
Pc	correzione pressione, valore da ricavare dalla prova di taratura della guaina					
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$					
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini					
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_c$					
V _{inv}	inverso del volume V _{inv} = 1000/V _{60,cor}					
Creep	$= V_{60} - V_{30}$					


B.11.1 TERRENI COESIVI

PARAMETRI CARATTERISTICI

N.B.	Inserire i valori di P_0 , V_0 e P_f , V_f sulla base dei grafici p , $V60$ p , $I0$ facendo riferimento alle indicazioni del foglio "Descriz_elaborazione" I valori numerici devono essere ricavati dalla tabella nel foglio "Letture_co essere punti della curva	·	
Po	pressione inizial (termine ricompressione - inizio tratto elastico)	0,19	(MPa)
\mathbf{V}_{0}°	volume inizial (termine ricompressione - inizio tratto elastico)	260,00	(cm ³)
P_{f}	pressione di scorrimento(inizio tratto plastico)		(MPa)
V_{f}	volume di scorrimento(inizio tratto plastico)		(cm ³)
P _{lim}	pressione limite	11,65	(MPa)
V_{lim}	volume limite $(V_{lim} = V_i + 2^*V_0)$	1030,00	(cm ³)

B.11.1 TERRENI COESIVI

COESIONE NON DRENATA

cup	valore di picco	#N/D	(MPa)
cu _r	valore residuo	#N/D	(MPa)
#N/D	#N/D		

STATO DI SFORZO "IN SITU"

k _o	coefficiente di spinta a riposo	1,35	(-)	

PARAMETRI ELASTICI

ν	coefficiente di Poisson	0,33	(-)
Gi	modulo di taglio	0	(MPa)
E _i	modulo pressiometrico	1	(MPa)
G_{sr}	modulo di taglio di scarico e ricarico		(MPa)
E _{sr}	modulo pressiometrico di scarico e ricarico		(MPa)

N.B. I valori dei parametri di resistenza e deformabilità dipendono fortemente dai valori di Vo,Po e Vf,Pf definiti dall'utente. Si ritiene più corretto che l'utente esegua una valutazione dei parametri stessi scegliendo non una sola coppia di valori di Vo,Po e Vf,Pf, bensì un campo di variazione degli stessi.

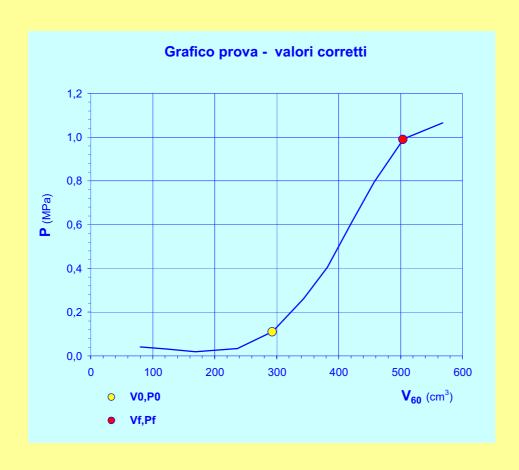
B.11.1 TERRENI COESIVI

DATI GENERALI

Z s	Profondità sondaggio da p.c.		(m)
Z_{w}	Profondità falda da p.c.	8,00	(m)
γ ₁	Peso di volume totale terreno sopra falda	19,0	(kN/m ³)
γ ₂	Peso di volume totale terreno sotto falda	19,0	(kN/m ³)
T _a	Temperatura ambiente	30	(°C)
$T_{\rm f}$	Temperatura foro	20	(°C)

SONDA			
Guaina	sigla di indentificazione n° cicli espansione (si consiglia l'utilizzo di guaine sottoposte ad almeno 5 cicli di espansione)	1 5	
	Diametro effettivo	60	(mm)
Tipo tub	icini	lunghi	
H _m	Altezza manometro lettura da p.c.	0,60	(m)
H _c	Altezza cavità	0,80	(m)
Z _p	Distanza centro sonda da p.c.(profondità di prova)	6,50	(m)
Perforaz	ione cavità		
	Metodo di perforazione	carotiere semplice)
	Utilizzo fanghi (S/N)	N	_
þ	Diametro	66	(mm)
γ	Peso specifico liquido circuito di misura	9,81	(kN/m ³)
V _i	Volume sonda a pressione atmosferica	510	(cm ³)

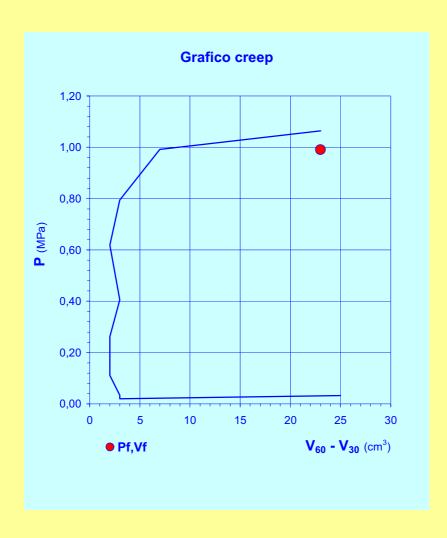
Dati obbligatori

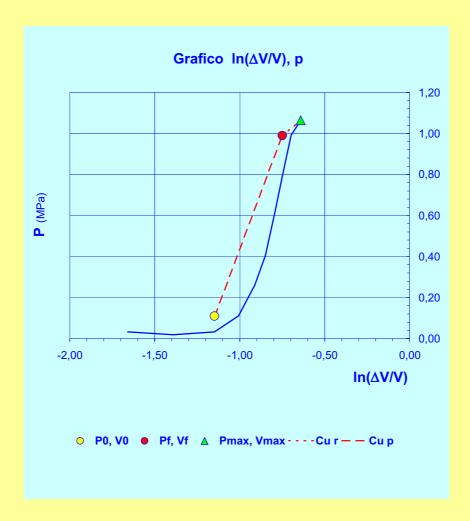

B.11.1 TERRENI COESIVI

LETTURE CORRETTE

Р	V ₆₀	P+P _w	Pc	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(MPa)	(cm ³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
0,00	80,00	0,07	0,03	0,09	0,04	79,91		
0,01	120,0	0,08	0,05	0,07	0,03	119,93	8,34	25,00
0,02	169,0	0,09	0,07	0,04	0,02	168,96	5,92	3,00
0,05	237,0	0,11	0,08	0,07	0,03	236,93	4,22	3,00
0,14	294,0	0,21	0,10	0,23	0,11	293,77	3,40	2,00
0,30	344,0	0,37	0,11	0,55	0,26	343,45	2,91	2,00
0,45	383,0	0,52	0,11	0,86	0,41	382,14	2,62	3,00
0,67	424,0	0,74	0,12	1,31	0,62	422,69	2,37	2,00
0,85	459,0	0,92	0,13	1,67	0,79	457,33	2,19	3,00
1,05	507,0	1,12	0,13	2,09	0,99	504,91	1,98	7,00
1,12	570,0	1,19	0,13	2,25	1,06	567,75	1,76	23,00

Legenda	egenda					
P	pressione imposta in fase di prova					
V ₆₀	lettura volume a 60 sec					
P _w	pressione fluido circuito misura (da manometro a centro sonda)					
Pc	correzione pressione, valore da ricavare dalla prova di taratura della guaina					
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$					
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini					
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_c$					
V _{inv}	inverso del volume V inv = 1000/V 60,cor					
Creep	$= V_{60} - V_{30}$					


B.11.1 TERRENI COESIVI



PARAMETRI CARATTERISTICI

N.B.	Inserire i valori di P_0 , V_0 e P_f , V_f sulla base dei grafici p , V_0 0 p , V_0 0 e V_0 0 e V_0 0, facendo riferimento alle indicazioni del foglio "Descriz_elaborazione"
	I valori numerici devono essere ricavati dalla tabella nel foglio "Letture_corrette" , ovvero devono essere punti della curva

P_0	pressione inizial (termine ricompressione - inizio tratto elastico)	0,11	(MPa)
V_0	volume iniziale (termine ricompressione - inizio tratto elastico)	293,00	(cm ³)
P_f	pressione di scorrimento(inizio tratto plastico)	0,99	(MPa)
V_f	volume di scorrimento(inizio tratto plastico)	504,00	(cm ³)
P _{lim}	pressione limite	1,35	(MPa)
V_{lim}	volume limite $(V_{lim} = V_i + 2*V_0)$	1096,00	(cm ³)

B.11.1 TERRENI COESIVI

COESIONE NON DRENATA

cup	valore di picco	2,2	(MPa)
cur	valore residuo	0,7	(MPa)

STATO DI SFORZO "IN SITU"

k _o	coefficiente di spinta a riposo	0,89	(-)
No	coefficiente di spirita a riposo	0,69	(-)

PARAMETRI ELASTICI

ν	coefficiente di Poisson	0,33	(-)
Gi	modulo di taglio	4	(MPa)
E_i	modulo pressiometrico	10	(MPa)
G sr	modulo di taglio di scarico e ricarico		(MPa)
E _{sr}	modulo pressiometrico di scarico e ricarico		(MPa)

N.B. I valori dei parametri di resistenza e deformabilità dipendono fortemente dai valori di Vo,Po e Vf,Pf definiti dall'utente. Si ritiene più corretto che l'utente esegua una valutazione dei parametri stessi scegliendo non una sola coppia di valori di Vo,Po e Vf,Pf, bensì un campo di variazione degli stessi.

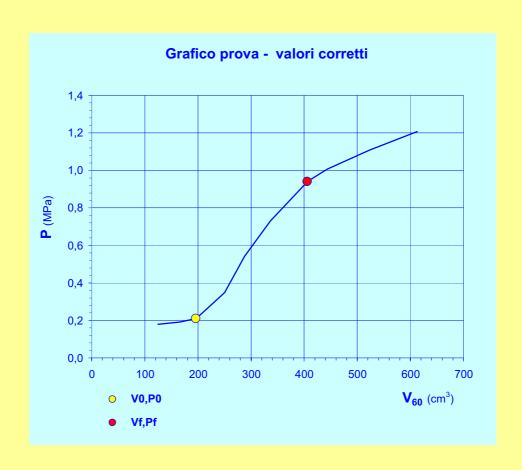
B.11.1 TERRENI COESIVI

DATI GENERALI

Z s	Profondità sondaggio da p.c.		(m)
Z_{w}	Profondità falda da p.c.	25,00	(m)
γ ₁	Peso di volume totale terreno sopra falda	19,0	(kN/m ³)
γ ₂	Peso di volume totale terreno sotto falda	19,0	(kN/m ³)
Ta	Temperatura ambiente	30	(°C)
T _f	Temperatura foro	20	(°C)

Guaina	sigla di indentificazione	1	
	n° cicli espansione	5	
	(si consiglia l'utilizzo di guaine sottoposte ad almeno 5 cicli di espansione)		
	Diametro effettivo	60 (mi	m)
Tipo tub	icini	lunghi	
H _m	Altezza manometro lettura da p.c.	0,60 (m))
H _c	Altezza cavità	0,80 (m))
Z p	Distanza centro sonda da p.c.(profondità di prova)	23,00 (m))
Perforaz	ione cavità		
	Metodo di perforazione	carotiere semplice	
	Utilizzo fanghi (S/N)	N	
φ	Diametro	66 (mi	m)
γ	Peso specifico liquido circuito di misura	9,81 (kN	l/m ³
V _i	Volume sonda a pressione atmosferica	510 (cm	1 ³)

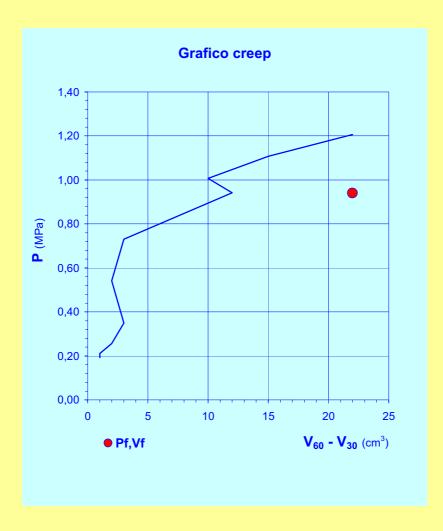
Dati obbligatori

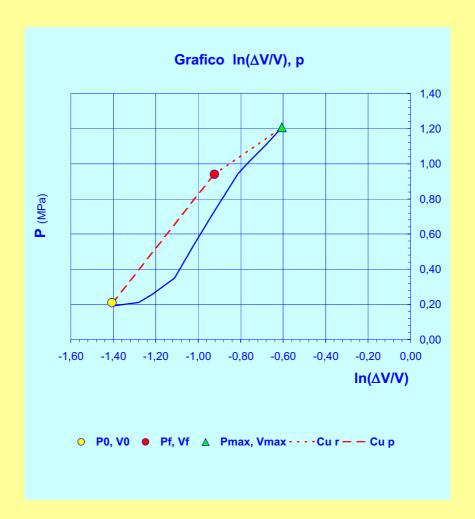

B.11.1 TERRENI COESIVI

LETTURE CORRETTE

Р	V ₆₀	P+P _w	P _c	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(MPa)	(cm ³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
0,00	125,00	0,23	0,05	0,40	0,18	124,60		
0,03	166,0	0,26	0,06	0,43	0,19	165,57	6,04	1,00
0,05	197,0	0,28	0,07	0,47	0,21	196,53	5,09	1,00
0,10	215,0	0,33	0,08	0,58	0,26	214,42	4,66	2,00
0,20	251,0	0,43	0,08	0,78	0,35	250,22	4,00	3,00
0,40	289,0	0,63	0,09	1,21	0,54	287,79	3,47	2,00
0,60	338,0	0,83	0,10	1,64	0,73	336,36	2,97	3,00
0,82	409,0	1,05	0,11	2,12	0,94	406,88	2,46	12,00
0,89	446,0	1,12	0,11	2,26	1,01	443,74	2,25	10,00
1,00	525,0	1,23	0,12	2,49	1,11	522,51	1,91	15,00
1,10	615,0	1,33	0,13	2,71	1,21	612,29	1,63	22,00

Legenda	Legenda				
P	pressione imposta in fase di prova				
V ₆₀	lettura volume a 60 sec				
P _w	pressione fluido circuito misura (da manometro a centro sonda)				
Pc	correzione pressione, valore da ricavare dalla prova di taratura della guaina				
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$				
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini				
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_c$				
V _{inv}	inverso del volume V inv = 1000/V 60,cor				
Creep	$= V_{60} - V_{30}$				


B.11.1 TERRENI COESIVI



PARAMETRI CARATTERISTICI

N.B.	Inserire i valori di P_0 , V_0 e P_f , V_f sulla base dei grafici p , $V60$ p , $log(\Delta R/R_0)$ e p , Creep,
	facendo riferimento alle indicazioni del foglio "Descriz_elaborazione"
	I valori numerici devono essere ricavati dalla tabella nel foglio "Letture_corrette", ovvero devono
	essere punti della curva

P_0	pressione inizial (termine ricompressione - inizio tratto elastico)	0,21	(MPa)
V_0	volume iniziale (termine ricompressione - inizio tratto elastico)	196,00	(cm ³)
P_f	pressione di scorrimento(inizio tratto plastico)	0,94	(MPa)
V_f	volume di scorrimento(inizio tratto plastico)	406,00	(cm ³)
P _{lim}	pressione limite	1,39	(MPa)
V_{lim}	volume limite $(V_{lim} = V_i + 2^*V_0)$	902,00	(cm ³)

B.11.1 TERRENI COESIVI

COESIONE NON DRENATA

cup	valore di picco	1,5	(MPa)
cur	valore residuo	0,8	(MPa)

STATO DI SFORZO "IN SITU"

k _o	coefficiente di spinta a riposo	0,48	(-)	

PARAMETRI ELASTICI

ν	coefficiente di Poisson	0,33	(-)
G _i	modulo di taglio	3	(MPa)
E,	modulo pressiometrico	7	(MPa)
G _{sr}	modulo di taglio di scarico e ricarico		(MPa)
E _{sr}	modulo pressiometrico di scarico e ricarico		(MPa)

N.B. I valori dei parametri di resistenza e deformabilità dipendono fortemente dai valori di Vo,Po e Vf,Pf definiti dall'utente. Si ritiene più corretto che l'utente esegua una valutazione dei parametri stessi scegliendo non una sola coppia di valori di Vo,Po e Vf,Pf, bensì un campo di variazione degli stessi.

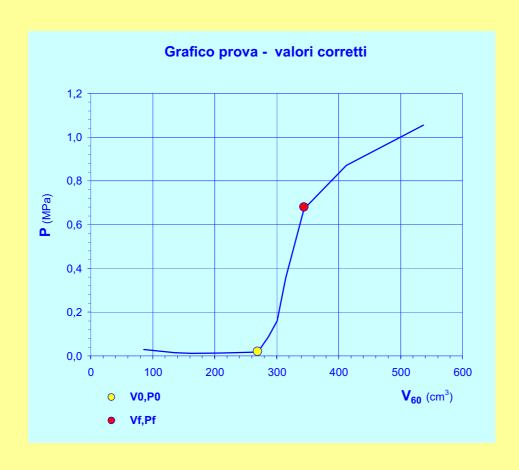
B.11.1 TERRENI COESIVI

DATI GENERALI

Z s	Profondità sondaggio da p.c.		(m)
Z_{w}	Profondità falda da p.c.	14,00	(m)
γ ₁	Peso di volume totale terreno sopra falda	19,0	(kN/m ³)
γ ₂	Peso di volume totale terreno sotto falda	19,0	(kN/m ³)
T_a	Temperatura ambiente	30	(°C)
T_f	Temperatura foro	20	(°C)

SONDA				
Guaina	sigla di indentificazione n° cicli espansione (si consiglia l'utilizzo di guaine sottoposte ad almeno 5 cicli di espansione)		1 5	
	Diametro effettivo		60	(mm)
Tipo tubio	cini		lunghi	
H _m	Altezza manometro lettura da p.c.		0,60	(m)
H _c	Altezza cavità	-	0,80	(m)
\mathbf{Z}_{p}	Distanza centro sonda da p.c.(profondità di prova)		5,50	(m)
Perforazi	one cavità			
	Metodo di perforazione	carotier	e semplice)
	Utilizzo fanghi (S/N)		N	_
ф	Diametro		66	(mm)
γ	Peso specifico liquido circuito di misura		9,81	(kN/m ³)
V _i	Volume sonda a pressione atmosferica		510	(cm ³)
				_

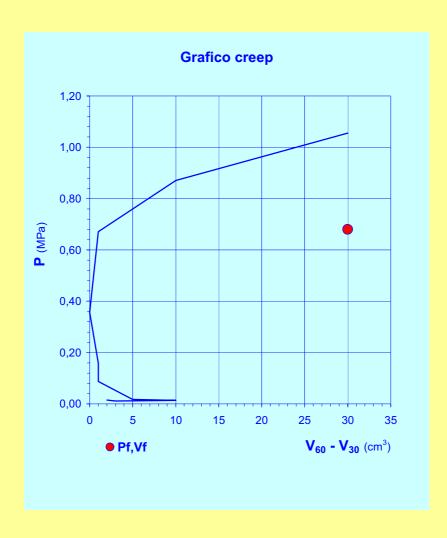
Dati obbligatori

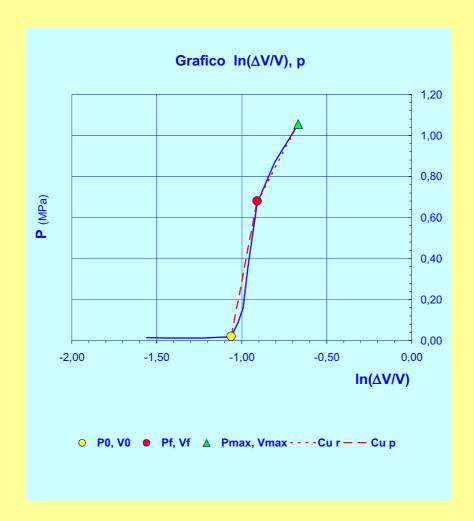

B.11.1 TERRENI COESIVI

LETTURE CORRETTE

Р	V ₆₀	P+P _w	Pc	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(MPa)	(cm ³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
0,00	86,00	0,06	0,03	0,09	0,03	85,91		
0,01	136,0	0,07	0,06	0,04	0,01	135,96	7,36	2,00
0,02	163,0	0,08	0,07	0,03	0,01	162,97	6,14	3,00
0,03	210,0	0,09	0,08	0,04	0,01	209,96	4,76	10,00
0,05	270,0	0,11	0,09	0,05	0,02	269,95	3,70	5,00
0,13	287,0	0,18	0,10	0,25	0,09	286,75	3,49	1,00
0,20	301,0	0,26	0,10	0,46	0,16	300,54	3,33	1,00
0,40	316,0	0,46	0,10	1,03	0,36	314,97	3,17	0,00
0,72	346,0	0,78	0,11	1,94	0,67	344,06	2,91	1,00
0,93	415,0	0,99	0,12	2,51	0,87	412,49	2,42	10,00
1,12	540,0	1,18	0,13	3,04	1,05	536,96	1,86	30,00

Legenda	1
P	pressione imposta in fase di prova
V ₆₀	lettura volume a 60 sec
P _w	pressione fluido circuito misura (da manometro a centro sonda)
Pc	correzione pressione, valore da ricavare dalla prova di taratura della guaina
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_c$
V _{inv}	inverso del volume V _{inv} = 1000/V _{60,cor}
Creep	$= V_{60} - V_{30}$


B.11.1 TERRENI COESIVI



PARAMETRI CARATTERISTICI

N.B. Inserire i valori di P₀, V₀ e P₆, V₆ sulla base dei grafici p, V60 p, log(ΔR/R₀) e p,Creep, facendo riferimento alle indicazioni del foglio "Descriz_elaborazione"
I valori numerici devono essere ricavati dalla tabella nel foglio "Letture_corrette", ovvero devono essere punti della curva

P_0	pressione inizial (termine ricompressione - inizio tratto elastico)	0,02	(MPa)
V_0	volume inizial (termine ricompressione - inizio tratto elastico)	269,00	(cm ³)
P_f	pressione di scorrimento(inizio tratto plastico)	0,68	(MPa)
V _f	volume di scorrimento(inizio tratto plastico)	344,00	(cm ³)
P _{lim}	pressione limite	1,35	(MPa)
V _{lim}	volume limite $(V_{lim} = V_i + 2*V_0)$	1048,00	(cm ³)

B.11.1 TERRENI COESIVI

COESIONE NON DRENATA

cup	valore di picco	4,3	(MPa)
cur	valore residuo	1,6	(MPa)

STATO DI SFORZO "IN SITU"

k _o	coefficiente di spinta a riposo	0,19	(-)	

PARAMETRI ELASTICI

ν	coefficiente di Poisson	0,33	(-)
G _i	modulo di taglio	7	(MPa)
E,	modulo pressiometrico	19	(MPa)
G _{sr}	modulo di taglio di scarico e ricarico		(MPa)
Esr	modulo pressiometrico di scarico e ricarico		(MPa)

N.B. I valori dei parametri di resistenza e deformabilità dipendono fortemente dai valori di Vo,Po e Vf,Pf definiti dall'utente. Si ritiene più corretto che l'utente esegua una valutazione dei parametri stessi scegliendo non una sola coppia di valori di Vo,Po e Vf,Pf, bensì un campo di variazione degli stessi.

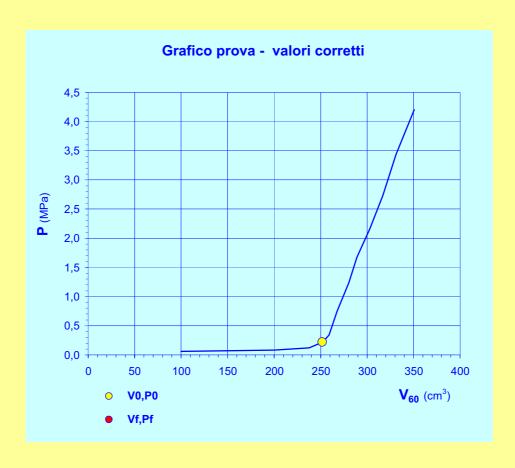
B.11.1 TERRENI COESIVI

DATI GENERALI

Z s	Profondità sondaggio da p.c.		(m)
\mathbf{Z}_{w}	Profondità falda da p.c.	11,00	(m)
γ ₁	Peso di volume totale terreno sopra falda	19,0	(kN/m ³)
γ ₂	Peso di volume totale terreno sotto falda	19,0	(kN/m ³)
T _a	Temperatura ambiente	30	(°C)
T _f	Temperatura foro	20	(°C)

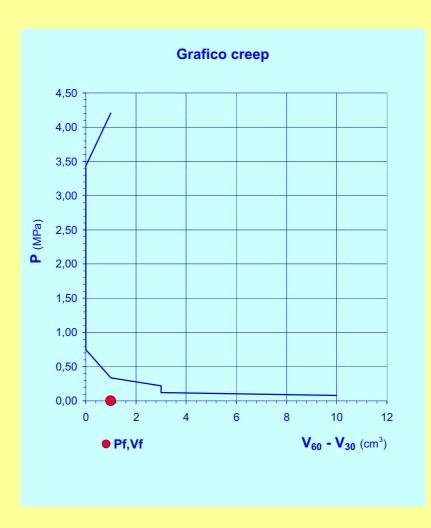
Guaina	sigla di indentificazione	<u> </u>
	n° cicli espansione (si consiglia l'utilizzo di guaine sottoposte ad	<u> </u>
	almeno 5 cicli di espansione)	
	Diametro effettivo	60 (mm)
Tipo tub	icini	lunghi
H _m	Altezza manometro lettura da p.c.	0,60 (m)
H _c	Altezza cavità	0,80 (m)
Z p	Distanza centro sonda da p.c.(profondità di prova)	10,20 (m)
Perforaz	zione cavità	
	Metodo di perforazione	carotiere semplice
	Utilizzo fanghi (S/N)	N
	Diametro	66 (mm)
,	Peso specifico liquido circuito di misura	9,81 (kN/m ³
V _i	Volume sonda a pressione atmosferica	510 (cm ³)

Dati obbligatori


B.11.1 TERRENI COESIVI

LETTURE CORRETTE

Р	V ₆₀	P+P _w	Pc	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(MPa)	(cm ³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
0,00	100,00	0,11	0,05	0,17	0,06	99,83	, ,	, ,
0,05	200,0	0,16	0,08	0,23	0,08	199,77	5,01	10,00
0,10	238,0	0,21	0,08	0,36	0,12	237,64	4,21	3,00
0,20	253,0	0,31	0,09	0,63	0,22	252,37	3,96	3,00
0,32	260,0	0,43	0,09	0,98	0,34	259,02	3,86	1,00
0,73	270,0	0,84	0,09	2,15	0,75	267,85	3,73	0,00
1,23	284,0	1,33	0,09	3,57	1,24	280,43	3,57	0,00
1,66	294,0	1,77	0,09	4,82	1,67	289,18	3,46	0,00
2,15	309,0	2,26	0,10	6,23	2,16	302,77	3,30	0,00
2,73	325,0	2,84	0,10	7,89	2,74	317,11	3,15	0,00
3,43	341,0	3,54	0,10	9,91	3,43	331,09	3,02	0,00
4,20	363,0	4,31	0,10	12,14	4,21	350,86	2,85	1,00


Legenda			
P	pressione imposta in fase di prova		
V ₆₀	lettura volume a 60 sec		
P _w	pressione fluido circuito misura (da manometro a centro sonda)		
Pc	correzione pressione, valore da ricavare dalla prova di taratura della guaina		
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$		
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini		
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_c$		
V _{inv}	inverso del volume V inv = 1000/V 60,cor		
Creep	$= V_{60} - V_{30}$		

B.11.1 TERRENI COESIVI

PARAMETRI CARATTERISTICI

N.B.	Inserire i valori di P_0 , V_0 e P_f , V_f sulla base dei grafici p , $V60$ p , $I0$ facendo riferimento alle indicazioni del foglio "Descriz_elaborazione"	g(∆R/R₀) e	p,Creep,
	I valori numerici devono essere ricavati dalla tabella nel foglio "Letture_co essere punti della curva	orrette" , ovve	ro devono
Po	pressione iniziale (termine ricompressione - inizio tratto elastico)	0,22	(MPa)
V ₀	volume iniziale (termine ricompressione - inizio tratto elastico)	252,00	(cm ³)
P_{f}	pressione di scorrimento(inizio tratto plastico)		(MPa)
V_{f}	volume di scorrimento(inizio tratto plastico)		(cm ³)
P_{lim}	pressione limite	12,67	(MPa)
V_{lim}	volume limite $(V_{lim} = V_i + 2^*V_0)$	1014,00	(cm ³)

B.11.1 TERRENI COESIVI

COESIONE NON DRENATA

cup	valore di picco	#N/D	(MPa)
cur	valore residuo	#N/D	(MPa)
#N/D	#N/D		

STATO DI SFORZO "IN SITU"

k _o	coefficiente di spinta a riposo	1,14	(-)

PARAMETRI ELASTICI

ν	coefficiente di Poisson	0,33	(-)
Gi	modulo di taglio	1	(MPa)
E _i	modulo pressiometrico	1	(MPa)
G _{sr}	modulo di taglio di scarico e ricarico		(MPa)
E _{sr}	modulo pressiometrico di scarico e ricarico		(MPa)

N.B. I valori dei parametri di resistenza e deformabilità dipendono fortemente dai valori di Vo,Po e Vf,Pf definiti dall'utente. Si ritiene più corretto che l'utente esegua una valutazione dei parametri stessi scegliendo non una sola coppia di valori di Vo,Po e Vf,Pf, bensì un campo di variazione degli stessi.

B.11.2. TERRENI NON COESIVI

DATI GENERALI

Z s	Profondità sondaggio da p.c.	20,00	(m)
Z_{w}	Profondità falda da p.c.	14,50	(m)
γ ₁	Peso di volume totale terreno sopra falda	19,00	(kN/m ³)
γ ₂	Peso di volume totale terreno sotto falda	19,00	(kN/m ³)
T _a	Temperatura ambiente	20	(°C)
$T_{\rm f}$	Temperatura foro	20	(°C)

SONDA

Guaina	N	1	
	n° cicli espansione	5	
	(si consiglia l'utilizzo di guaine sottoposte ad almeno 5 cicli di espansione)		
	Diametro effettivo	60	(mm)
Γ <mark>ipo t</mark> uk	picini	lunghi	
l _m	Altezza manometro lettura da p.c.	0,60	(m)
l _c	Altezza cavità	0,80	(m)
, -p	Distanza centro sonda da p.c.(profondità di prova)	14,00	(m)
erfora	zione cavità		
	Metodo di perforazione carot	iere semplic	е
	Utilizzo fanghi (S/N)	N	
	Diametro	66	(mm)
	Peso specifico liquido circuito di misura	9,81	(kN/m ³
<i>1</i> .	Volume sonda a pressione atmosferica	495	(cm ³)

Dati obbligatori

B.11.2. TERRENI NON COESIVI

LETTURE CORRETTE

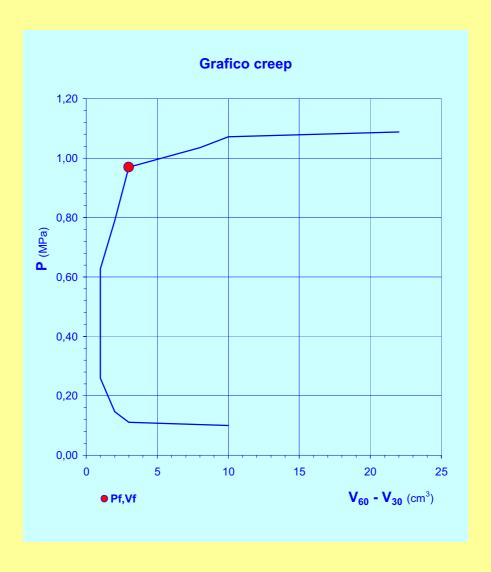
Р	V ₆₀	P+P _w	Pc	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(MPa)	(cm ³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
0,00	109,00	0,14	0,04	0,21	0,10	108,79		
0,02	153,0	0,16	0,06	0,21	0,10	152,79	6,54	10,00
0,04	181,0	0,18	0,07	0,23	0,11	180,77	5,53	3,00
0,08	212,0	0,22	0,08	0,31	0,15	211,69	4,72	2,00
0,20	244,0	0,34	0,08	0,55	0,26	243,45	4,11	1,00
0,36	281,0	0,50	0,10	0,86	0,41	280,14	3,57	1,00
0,59	334,0	0,73	0,11	1,32	0,63	332,68	3,01	1,00
0,76	382,0	0,90	0,11	1,66	0,79	380,34	2,63	2,00
0,95	443,0	1,09	0,12	2,04	0,97	440,96	2,27	3,00
1,02	500,0	1,16	0,13	2,18	1,04	497,82	2,01	8,00
1,06	570,0	1,20	0,13	2,26	1,07	567,74	1,76	10,00
1,08	672,0	1,22	0,14	2,30	1,09	669,70	1,49	22,00

Legenda	Legenda				
P	pressione imposta in fase di prova				
V ₆₀	lettura volume a 60 sec				
P _w	pressione fluido circuito misura (da manometro a centro sonda)				
Pc	correzione pressione, valore da ricavare dalla prova di taratura della guaina				
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$				
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini				
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_c$				
V _{inv}	inverso del volume V inv = 1000/V 60,cor				
Creep	$= V_{60} - V_{30}$				

B.11.2. TERRENI NON COESIVI

PARAMETRI CARATTERISTICI

N.B. Inserire i valori di P₀, V₀ e P₁, V₁ sulla base dei grafici p, V60 p, log(ΔR/R₀) e p,Creep, facendo riferimento alle indicazioni del foglio "Descriz_elaborazione" I valori numerici devono essere ricavati dalla tabella nel foglio "Letture_corrette" , ovvero devono essere punti della curva


P_0	pressione iniziale (termine ricompressione - inizio tratto elastico)	0,15	(MPa)
V_0	volume iniziale (termine ricompressione - inizio tratto elastico)	211,69	(cm ³)
P_{f}	pressione di scorrimento (inizio tratto plastico)	0,97	(MPa)
V_f	volume di scorrimento (inizio tratto plastico)	440,96	(cm ³)
P _{lim}	pressione limite	1,11	(MPa)

918,38 (cm³)

P_{lim} pressione limite

 V_{lim} volume limite $V_{lim} = V_i + 2*V_0$

B.11.2. TERRENI NON COESIVI

B.11.2. TERRENI NON COESIVI

PARAMETRI ELASTICI

ν	coefficiente di Poisson	0,3	(-)
Gi	modulo di taglio	2,94	(MPa)
E _i	modulo pressiometrico	7,64	(MPa)
G _{sr}	modulo di taglio di scarico e ricarico		(MPa)
E_{sr}	modulo pressiometrico di scarico e ricarico		(MPa)

ANGOLO DI ATTRITO E DILATANZA

S	pendenza tratto finale curva $log(p-y), log(\epsilon_r)$	0,18	(-)
ф _{сv} '	angolo di attrito a volume costante	25	(°)
φ'	angolo di attrito	16,2	(°)
Ψ	angolo di dilatanza	-9,3	(°)

	30°	sabbia fine uniforme
	34°	sabbia fine ben gradata
	34°	sabbia media uniforme
фсv"	37°	sabbia media ben gradata
	37°	sabbia grossa uniforme
	40°	ghiaia sabbioso-limosa ben gradata

B.11.2. TERRENI NON COESIVI

DATI GENERALI

Z s	Profondità sondaggio da p.c.	20,00	(m)
Z_{w}	Profondità falda da p.c.	14,00	(m)
γ ₁	Peso di volume totale terreno sopra falda	19,00	(kN/m ³)
γ ₂	Peso di volume totale terreno sotto falda	19,00	(kN/m ³)
T _a	Temperatura ambiente	20	(°C)
$T_{\rm f}$	Temperatura foro	20	(°C)

Guaina	N	1	
	n° cicli espansione	5	
	(si consiglia l'utilizzo di guaine sottoposte ad almeno 5 cicli di espansione)		
	Diametro effettivo	60	(mm)
Tipo tuk	picini	lunghi	
H _m	Altezza manometro lettura da p.c.	0,60	(m)
H _c	Altezza cavità	0,80	(m)
Z _p	Distanza centro sonda da p.c.(profondità di prova)	12,50	(m)
Perfora:	zione cavità		
	Metodo di perforazione carot	iere semplic	е
	Utilizzo fanghi (S/N)	N	
ф	Diametro	66	(mm)
γ	Peso specifico liquido circuito di misura	9,81	(kN/m ³
V _i	Volume sonda a pressione atmosferica	495	(cm ³)

Dati obbligatori

B.11.2. TERRENI NON COESIVI

LETTURE CORRETTE

Р	V ₆₀	P+P _w	Pc	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(MPa)	(cm ³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
0,00	160,00	0,13	0,07	0,13	0,06	159,87		
0,02	189,0	0,15	0,07	0,16	0,08	188,84	5,30	1,00
0,06	221,0	0,19	0,08	0,23	0,11	220,77	4,53	2,00
0,11	246,0	0,24	0,08	0,33	0,15	245,67	4,07	1,00
0,21	286,0	0,34	0,10	0,51	0,24	285,49	3,50	2,00
0,30	313,0	0,43	0,10	0,69	0,33	312,31	3,20	3,00
0,40	342,0	0,53	0,11	0,89	0,42	341,11	2,93	3,00
0,50	368,0	0,63	0,11	1,09	0,52	366,91	2,73	3,00
0,60	396,0	0,73	0,12	1,29	0,61	394,71	2,53	5,00
0,70	462,0	0,83	0,13	1,48	0,70	460,52	2,17	9,00
0,75	574,0	0,88	0,13	1,59	0,75	572,41	1,75	27,00

Legenda	Legenda							
P	pressione imposta in fase di prova							
V ₆₀	lettura volume a 60 sec							
P _w	pressione fluido circuito misura (da manometro a centro sonda)							
Pc	correzione pressione, valore da ricavare dalla prova di taratura della guaina							
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$							
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini							
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_c$							
V _{inv}	inverso del volume V inv = 1000/V 60,cor							
Creep	$= V_{60} - V_{30}$							

B.11.2. TERRENI NON COESIVI

PARAMETRI CARATTERISTICI

N.B. Inserire i valori di P₀, V₀ e P₁, V₁ sulla base dei grafici p, V60 p, log(ΔR/R₀) e p,Creep, facendo riferimento alle indicazioni del foglio "Descriz_elaborazione"

I valori numerici devono essere ricavati dalla tabella nel foglio "Letture_corrette", ovvero devono essere punti della curva

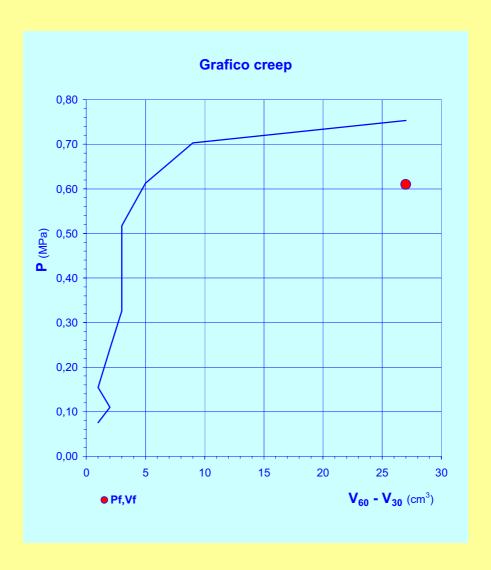
P_0	pressione iniziale (termine ricompressione - inizio tratto elastico)	0,11
V_0	volume iniziale (termine ricompressione - inizio tratto elastico)	220,0

P_f pressione di scorrimento (inizio tratto plastico)

V_f volume di scorrimento (inizio tratto plastico)

P_{lim} pressione limite

 V_{lim} volume limite $V_{lim} = V_i + 2*V_0$


220,00 (cm³) 0,61 (MPa)

(MPa)

394,00 (cm³) 0,83 (MPa)

935,00 (cm³)

B.11.2. TERRENI NON COESIVI

B.11.2. TERRENI NON COESIVI

PARAMETRI ELASTICI

ν	coefficiente di Poisson	0,3	(-)
Gi	modulo di taglio	2,30	(MPa)
E _i	modulo pressiometrico	5,99	(MPa)
G _{sr}	modulo di taglio di scarico e ricarico		(MPa)
E _{sr}	modulo pressiometrico di scarico e ricarico		(MPa)

ANGOLO DI ATTRITO E DILATANZA

S	pendenza tratto finale curva $log(p-y), log(\epsilon_r)$	0,36	(-)
ф _{сv} '	angolo di attrito a volume costante	25	(°)
φ'	angolo di attrito	29,7	(°)
Ψ	angolo di dilatanza	5,3	(°)

	30°	sabbia fine uniforme
	34°	sabbia fine ben gradata
φ _{cv} '	34°	sabbia media uniforme
Ψсν	37°	sabbia media ben gradata
	37°	sabbia grossa uniforme
	40°	ghiaia sabbioso-limosa ben gradata

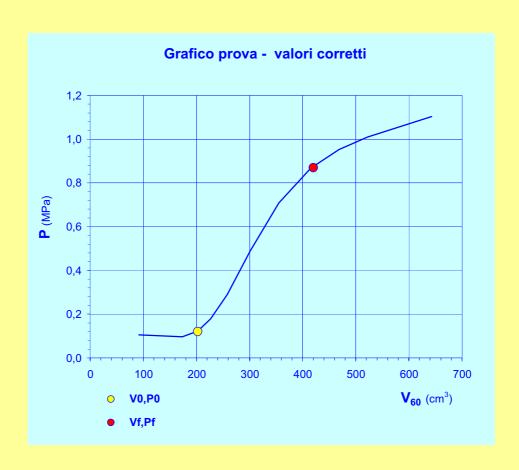
B.11.1 TERRENI COESIVI

DATI GENERALI

Z s	Profondità sondaggio da p.c.		(m)
Z_{w}	Profondità falda da p.c.	14,00	(m)
γ ₁	Peso di volume totale terreno sopra falda	19,0	(kN/m ³)
γ ₂	Peso di volume totale terreno sotto falda	19,0	(kN/m ³)
Ta	Temperatura ambiente	30	(°C)
T _f	Temperatura foro	20	(°C)

Guaina	sigla di indentificazione	1
	n° cicli espansione (si consiglia l'utilizzo di guaine sottoposte ad	5
	almeno 5 cicli di espansione)	
	Diametro effettivo	60 (mm)
Γipo tub	icini	lunghi
H _m	Altezza manometro lettura da p.c.	0,60 (m)
H _c	Altezza cavità	0,80 (m)
Z p	Distanza centro sonda da p.c.(profondità di prova)	13,50 (m)
Perforaz	ione cavità	
	Metodo di perforazione	carotiere semplice
	Utilizzo fanghi (S/N)	N
	Diametro	66 (mm)
1	Peso specifico liquido circuito di misura	9,81 (kN/m ³
V _i	Volume sonda a pressione atmosferica	510 (cm ³)

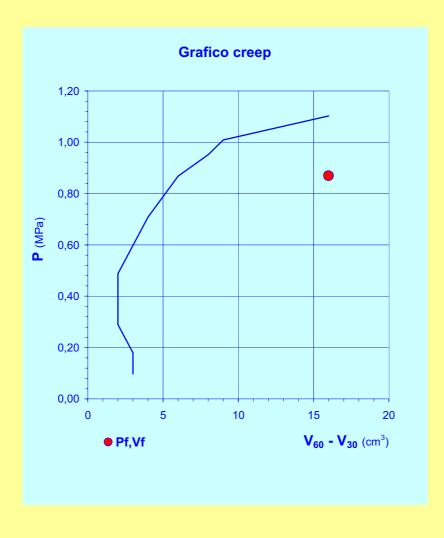
Dati obbligatori

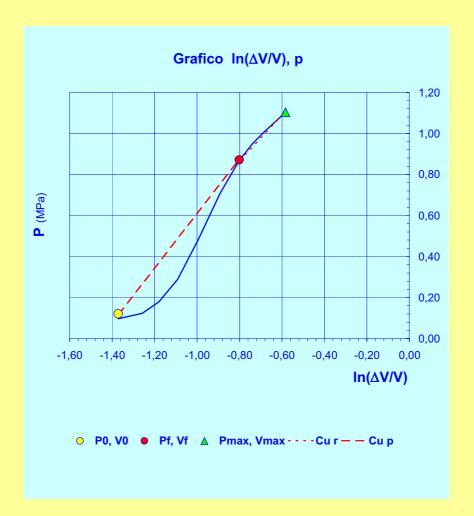

B.11.1 TERRENI COESIVI

LETTURE CORRETTE

Р	V ₆₀	P+P _w	Pc	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(MPa)	(cm ³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
0,00	92,00	0,14	0,03	0,30	0,11	91,70		
0,03	174,0	0,17	0,07	0,28	0,10	173,72	5,76	3,00
0,06	203,0	0,20	0,08	0,35	0,12	202,65	4,93	3,00
0,12	227,0	0,26	0,08	0,52	0,18	226,48	4,42	3,00
0,24	259,0	0,38	0,09	0,84	0,29	258,16	3,87	2,00
0,45	302,0	0,59	0,10	1,41	0,49	300,59	3,33	2,00
0,68	357,0	0,82	0,11	2,04	0,71	354,96	2,82	4,00
0,85	418,0	0,99	0,12	2,51	0,87	415,49	2,41	6,00
0,94	471,0	1,08	0,13	2,75	0,95	468,25	2,14	8,00
1,00	525,0	1,14	0,13	2,91	1,01	522,09	1,92	9,00
1,10	646,0	1,24	0,14	3,18	1,10	642,82	1,56	16,00

Legend	genda							
P	pressione imposta in fase di prova							
V ₆₀	lettura volume a 60 sec							
P _w	pressione fluido circuito misura (da manometro a centro sonda)							
P _c	correzione pressione, valore da ricavare dalla prova di taratura della guaina							
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$							
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini							
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_c$							
V _{inv}	inverso del volume V _{inv} = 1000/V _{60,cor}							
Creep	$= V_{60} - V_{30}$							


B.11.1 TERRENI COESIVI


PARAMETRI CARATTERISTICI

N.B.	Inserire i valori di P_0 , V_0 e P_f , V_f sulla base dei grafici p , $V60$ p , $log(\Delta R/R_0)$ e p , Creep facendo riferimento alle indicazioni del foglio "Descriz_elaborazione"									
	I valori numerici devono essere ricavati dalla tabella nel foglio "Letture_ essere punti della curva	_corrette" , ovve	ro devono							
P_0	pressione inizial (termine ricompressione - inizio tratto elastico)	0,12	(MPa)							
V_0	volume iniziale (termine ricompressione - inizio tratto elastico)	202,65	(cm ³)							
P_{f}	pressione di scorrimento(inizio tratto plastico)	0,87	(MPa)							
V_{f}	volume di scorrimento(inizio tratto plastico)	420,00	(cm ³)							
P _{lim}	pressione limite	1,22	(MPa)							
V_{lim}	volume limite $(V_{lim} = V_i + 2*V_0)$	915,30	(cm ³)							

B.11.1 TERRENI COESIVI

B.11.1 TERRENI COESIVI

B.11.1 TERRENI COESIVI

COESIONE NON DRENATA

cup	valore di picco	1,3	(MPa)
cur	valore residuo	1,1	(MPa)

STATO DI SFORZO "IN SITU"

k _o	coefficiente di spinta a riposo	0,47	(-)

PARAMETRI ELASTICI

ν	coefficiente di Poisson	0,33	(-)
Gi	modulo di taglio	3	(MPa)
E _i	modulo pressiometrico	8	(MPa)
G _{sr}	modulo di taglio di scarico e ricarico		(MPa)
E _{sr}	modulo pressiometrico di scarico e ricarico		(MPa)

N.B. I valori dei parametri di resistenza e deformabilità dipendono fortemente dai valori di Vo,Po e Vf,Pf definiti dall'utente. Si ritiene più corretto che l'utente esegua una valutazione dei parametri stessi scegliendo non una sola coppia di valori di Vo,Po e Vf,Pf, bensì un campo di variazione degli stessi.

B.11.2. TERRENI NON COESIVI

DATI GENERALI

Z s	Profondità sondaggio da p.c.	20,00	(m)
Z_{w}	Profondità falda da p.c.	14,00	(m)
γ ₁	Peso di volume totale terreno sopra falda	19,00	(kN/m ³)
γ ₂	Peso di volume totale terreno sotto falda	19,00	(kN/m ³)
T _a	Temperatura ambiente	20	(°C)
$T_{\rm f}$	Temperatura foro	20	(°C)

SONDA			
Guaina	N n° cicli espansione (si consiglia l'utilizzo di guaine sottoposte ad almeno 5 cicli di espansione)	1 5	
	Diametro effettivo	60	(mm)
Tipo tul	picini	lunghi	
H _m	Altezza manometro lettura da p.c.	0,60	(m)
H _c	Altezza cavità	0,80	(m)
Z _p	Distanza centro sonda da p.c.(profondità di prova)	11,50	(m)
Perfora	zione cavità		
	Metodo di perforazione ca	rotiere semplice	9
	Utilizzo fanghi (S/N)	N	-
ф	Diametro	66	(mm)
γ	Peso specifico liquido circuito di misura	9,81	(kN/m ³)
Vi	Volume sonda a pressione atmosferica	495	(cm ³)

Dati obbligatori

B.11.2. TERRENI NON COESIVI

LETTURE CORRETTE

Р	V ₆₀	P+P _w	Pc	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(MPa)	(cm ³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
0,00	125,00	0,12	0,05	0,14	0,07	124,86		
0,03	166,0	0,15	0,07	0,17	0,08	165,83	6,03	1,00
0,05	197,0	0,17	0,07	0,20	0,09	196,80	5,08	1,00
0,10	215,0	0,22	0,08	0,30	0,14	214,70	4,66	2,00
0,20	251,0	0,32	0,09	0,49	0,23	250,51	3,99	3,00
0,40	289,0	0,52	0,10	0,89	0,42	288,11	3,47	2,00
0,60	338,0	0,72	0,11	1,29	0,61	336,71	2,97	3,00
0,82	409,0	0,94	0,12	1,73	0,82	407,27	2,46	12,00
0,89	446,0	1,01	0,12	1,87	0,88	444,13	2,25	10,00
1,00	525,0	1,12	0,13	2,09	0,99	522,91	1,91	15,00
1,10	615,0	1,22	0,13	2,31	1,09	612,69	1,63	22,00

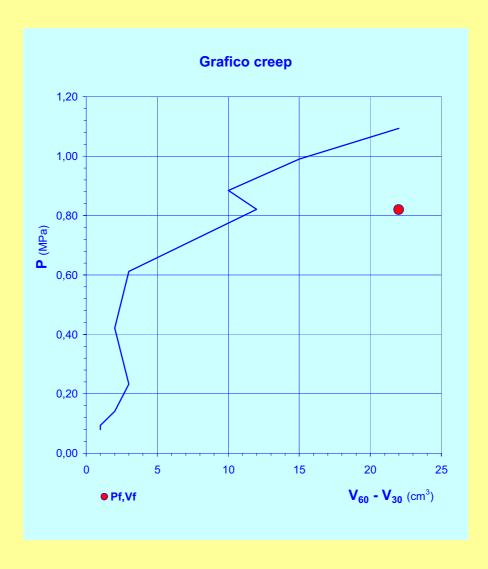
Legenda	Legenda				
P	pressione imposta in fase di prova				
V ₆₀	lettura volume a 60 sec				
P _w	pressione fluido circuito misura (da manometro a centro sonda)				
Pc	correzione pressione, valore da ricavare dalla prova di taratura della guaina				
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$				
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini				
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_c$				
V _{inv}	inverso del volume V _{inv} = 1000/V _{60,cor}				
Creep	$= V_{60} - V_{30}$				

B.11.2. TERRENI NON COESIVI

PARAMETRI CARATTERISTICI

N.B. Inserire i valori di P₀, V₀ e P₁, V₁ sulla base dei grafici p, V60 p, log(ΔR/R₀) e p,Creep, facendo riferimento alle indicazioni del foglio "Descriz_elaborazione" I valori numerici devono essere ricavati dalla tabella nel foglio "Letture_corrette" , ovvero devono essere punti della curva

P_0	pressione iniziale (termine ricompressione - inizio tratto elastico)	0,09	(MPa)
V_0	volume iniziale (termine ricompressione - inizio tratto elastico)	196,00	(cm ³)
P,	pressione di scorrimento (inizio tratto plastico)	0.82	(MPa)


volume di scorrimento (inizio tratto plastico)

P_{lim} pressione limite

 V_{lim} volume limite $V_{lim} = V_i + 2*V_0$

407,00 (cm³) 1,28 (MPa) 887,00 (cm³)

B.11.2. TERRENI NON COESIVI

B.11.2. TERRENI NON COESIVI

PARAMETRI ELASTICI

ν	coefficiente di Poisson	0,3	(-)
Gi	modulo di taglio	2,76	(MPa)
E _i	modulo pressiometrico	7,16	(MPa)
G _{sr}	modulo di taglio di scarico e ricarico		(MPa)
Esr	modulo pressiometrico di scarico e ricarico		(MPa)

ANGOLO DI ATTRITO E DILATANZA

S	pendenza tratto finale curva $log(p-y), log(\epsilon_r)$	0,51	(-)
ф _{сv} '	angolo di attrito a volume costante	0	(°)
φ'	angolo di attrito	31,0	(°)
Ψ	angolo di dilatanza	31,0	(°)

фсv'	30°	sabbia fine uniforme
	34°	sabbia fine ben gradata
	34°	sabbia media uniforme
	37°	sabbia media ben gradata
	37°	sabbia grossa uniforme
	40°	ghiaia sabbioso-limosa ben gradata

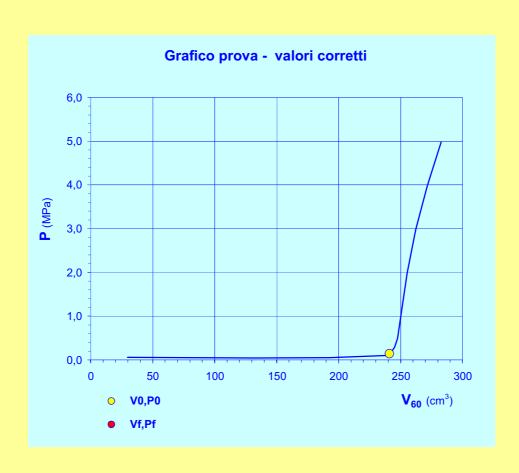
B.11.1 TERRENI COESIVI

DATI GENERALI

Z s	Profondità sondaggio da p.c.		(m)
Z_{w}	Profondità falda da p.c.	14,00	(m)
γ ₁	Peso di volume totale terreno sopra falda	19,0	(kN/m ³)
γ ₂	Peso di volume totale terreno sotto falda	19,0	(kN/m ³)
T_a	Temperatura ambiente	30	(°C)
T_f	Temperatura foro	20	(°C)

SONDA		
Guaina	sigla di indentificazione n° cicli espansione (si consiglia l'utilizzo di guaine sottoposte ad almeno 5 cicli di espansione)	6
	Diametro effettivo	60 (mm)
Tipo tub	icini	lunghi
H _m	Altezza manometro lettura da p.c.	0,60 (m)
H _c	Altezza cavità	0,80 (m)
<mark>Z</mark> p	Distanza centro sonda da p.c.(profondità di prova)	7,00 (m)
Perforaz	zione cavità	
	Metodo di perforazione	carotiere semplice
	Utilizzo fanghi (S/N)	N
)	Diametro	66 (mm)
/	Peso specifico liquido circuito di misura	9,81 (kN/m ³)
V _i	Volume sonda a pressione atmosferica	510 (cm ³)

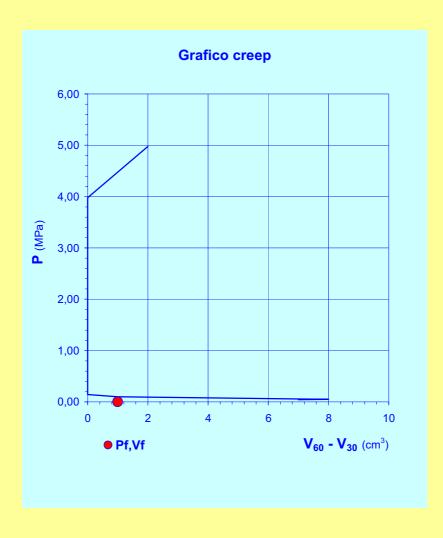
Dati obbligatori

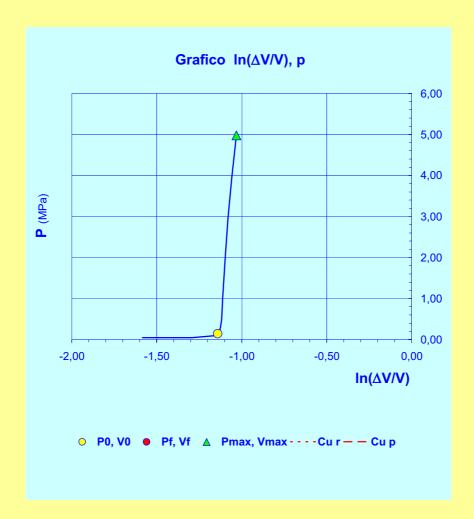

B.11.1 TERRENI COESIVI

LETTURE CORRETTE

Р	V ₆₀	P+P _w	Pc	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(MPa)	(cm ³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
0,00	30,00	0,07	0,02	0,17	0,06	29,83		
0,03	132,0	0,10	0,05	0,13	0,05	131,87	7,58	7,00
0,05	193,0	0,12	0,07	0,15	0,05	192,85	5,19	8,00
0,11	240,0	0,18	0,08	0,29	0,10	239,71	4,17	1,00
0,15	242,0	0,22	0,08	0,41	0,14	241,59	4,14	0,00
0,30	246,0	0,37	0,08	0,84	0,29	245,16	4,08	0,00
0,50	249,0	0,57	0,09	1,41	0,49	247,59	4,04	0,00
1,00	253,0	1,07	0,09	2,85	0,99	250,15	4,00	0,00
2,00	261,0	2,07	0,09	5,73	1,99	255,27	3,92	0,00
3,00	271,0	3,07	0,09	8,61	2,98	262,39	3,81	0,00
4,00	283,0	4,07	0,10	11,48	3,98	271,52	3,68	0,00
5,00	297,0	5,07	0,10	14,36	4,97	282,64	3,54	2,00

Legenda	Legenda					
P	pressione imposta in fase di prova					
V ₆₀	lettura volume a 60 sec					
P _w	pressione fluido circuito misura (da manometro a centro sonda)					
Pc	correzione pressione, valore da ricavare dalla prova di taratura della guaina					
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$					
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini					
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_c$					
V _{inv}	inverso del volume V _{inv} = 1000/V _{60,cor}					
Creep	$= V_{60} - V_{30}$					


B.11.1 TERRENI COESIVI


PARAMETRI CARATTERISTICI

N.B.	Inserire i valori di P_0 , V_0 e P_f , V_f sulla base dei grafici p , V_0 0 p , V_0 0 e P_0 0 e P_0 0 facendo riferimento alle indicazioni del foglio "Descriz_elaborazione"							
	I valori numerici devono essere ricavati dalla tabella nel foglio "Letture_ essere punti della curva	_corrette" , ovve	ero devono					
P_0	pressione inizial (termine ricompressione - inizio tratto elastico)	0,14	(MPa)					
V_0	volume iniziale (termine ricompressione - inizio tratto elastico)	241,00	(cm ³)					
P_f	pressione di scorrimento(inizio tratto plastico)		(MPa)					
V_f	volume di scorrimento(inizio tratto plastico)		(cm ³)					
P _{lim}	pressione limite	22,36	(MPa)					
V _{lim}	volume limite $(V_{lim} = V_i + 2*V_0)$	992,00	(cm ³)					

B.11.1 TERRENI COESIVI

B.11.1 TERRENI COESIVI

B.11.1 TERRENI COESIVI

COESIONE NON DRENATA

cup	valore di picco	#N/D	(MPa)
cur	valore residuo	#N/D	(MPa)
#N/D	#N/D		

STATO DI SFORZO "IN SITU"

k _o	coefficiente di spinta a riposo	1,05 (-))

PARAMETRI ELASTICI

ν	coefficiente di Poisson	0,33	(-)
G _i	modulo di taglio	0	(MPa)
E _i	modulo pressiometrico	1	(MPa)
G _{sr}	modulo di taglio di scarico e ricarico		(MPa)
E _{sr}	modulo pressiometrico di scarico e ricarico		(MPa)

N.B. I valori dei parametri di resistenza e deformabilità dipendono fortemente dai valori di Vo,Po e Vf,Pf definiti dall'utente. Si ritiene più corretto che l'utente esegua una valutazione dei parametri stessi scegliendo non una sola coppia di valori di Vo,Po e Vf,Pf, bensì un campo di variazione degli stessi.

B.11.1 TERRENI COESIVI

DATI GENERALI						
Z _s	Profondità sondaggio da p.c.	20,00	(m)			
Z_{w}	Profondità falda da p.c.	14,00	(m)			
γ1	Peso di volume totale terreno sopra falda	19,0	(kN/m³)			

SONDA

Guaina	sigla di indentificazione	1GT
	n° cicli espansione	6
	(si consiglia l'utilizzo di guaine sottoposte ad	

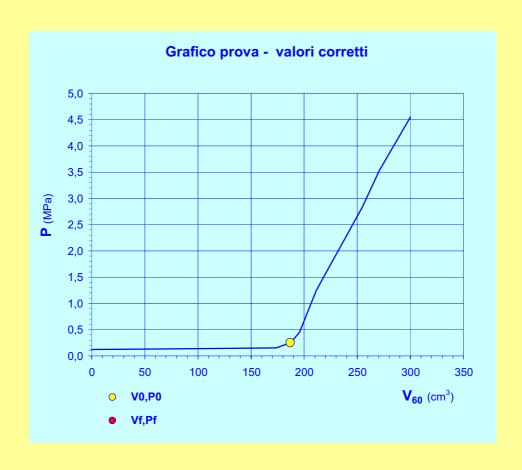
almeno 5 cicli di espansione)
Diametro effettivo 60 (mm)

Tipo tu	bicini	lunghi		
H _m	Altezza manometro lettura da p.c.	0,60	(m)	
H _c	Altezza cavità	0,80	(m)	
7	Distanza centro sonda da p.c./profondità di prova)	12.00	(m)	

Perforazione cavità

	Metodo di perforazione	carotiere semplice
	Utilizzo fanghi (S/N)	N
ф	Diametro	66 (mm)
γ	Peso specifico liquido circuito di misura	9,81 (kN/m ³)
Vi	Volume sonda a pressione atmosferica	510 (cm ³)

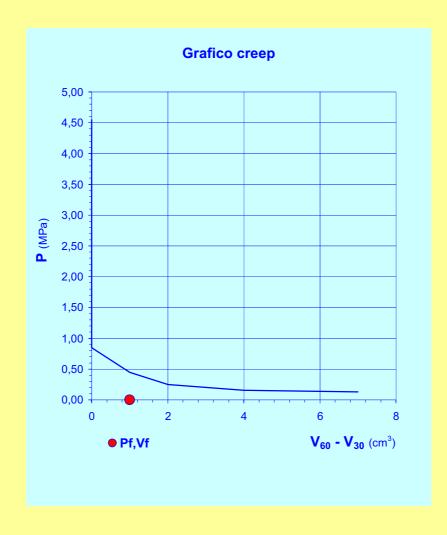
Dati obbligatori

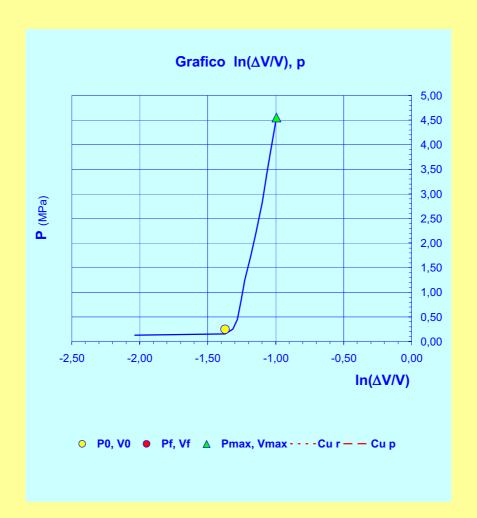

B.11.1 TERRENI COESIVI

LETTURE CORRETTE

Р	V ₆₀	P+P _w	Pc	V _c	P _{cor}	V _{60,cor}	V _{inv}	Creep
(MPa)	(cm ³)	(MPa)	(MPa)	(cm ³)	(MPa)	(cm ³)	(cm ⁻³)	(cm ³)
0,00	0,00	0,12	0,00	0,36	0,12	-0,36		
0,05	77,0	0,17	0,04	0,38	0,13	76,62	13,05	7,00
0,10	174,0	0,22	0,07	0,44	0,15	173,56	5,76	4,00
0,20	188,0	0,32	0,07	0,72	0,25	187,28	5,34	2,00
0,40	197,0	0,52	0,07	1,30	0,45	195,70	5,11	1,00
0,80	206,0	0,92	0,08	2,45	0,85	203,55	4,91	0,00
1,20	215,0	1,32	0,08	3,59	1,25	211,41	4,73	0,00
1,70	230,0	1,82	0,08	5,03	1,74	224,97	4,45	0,00
2,20	245,0	2,32	0,08	6,46	2,24	238,54	4,19	0,00
2,80	263,0	2,92	0,09	8,18	2,84	254,82	3,92	0,00
3,50	281,0	3,62	0,09	10,19	3,53	270,81	3,69	0,00
4,50	313,0	4,62	0,08	13,13	4,55	299,87	3,33	0,00

Legenda		
P	pressione imposta in fase di prova	
V ₆₀	lettura volume a 60 sec	
P _w	pressione fluido circuito misura (da manometro a centro sonda)	
Pc	correzione pressione, valore da ricavare dalla prova di taratura della guaina	
P _{cor}	pressione corretta $P_{cor} = P + P_w - P_c$	
V _c	correzione volume, valore da ricavare dalla prova di taratura dei tubicini	
V _{60,cor}	volume corretto $V_{60,cor} = V_{60} - V_c$	
V _{inv}	inverso del volume V _{inv} = 1000/V _{60,cor}	
Creep	$= V_{60} - V_{30}$	


B.11.1 TERRENI COESIVI


PARAMETRI CARATTERISTICI

N.B.	Inserire i valori di P_0 , V_0 e P_t , V_t sulla base dei grafici p , $V60$ p , facendo riferimento alle indicazioni del foglio "Descriz elaborazione"	log(⊿R/R₀) e	p,Creep,
	I valori numerici devono essere ricavati dalla tabella nel foglio "Letture_ essere punti della curva	corrette" , ovve	ero devono
P_0	pressione inizial (termine ricompressione - inizio tratto elastico)	0,25	(MPa)
V_0	volume inizial (termine ricompressione - inizio tratto elastico)	187,00	(cm ³)
P_f	pressione di scorrimento(inizio tratto plastico)		(MPa)
V_f	volume di scorrimento(inizio tratto plastico)		(cm ³)
P _{lim}	pressione limite	10,81	(MPa)
V_{lim}	volume limite $(V_{lim} = V_i + 2*V_0)$	884,00	(cm ³)

B.11.1 TERRENI COESIVI

B.11.1 TERRENI COESIVI

B.11.1 TERRENI COESIVI

COESIONE NON DRENATA

cup	valore di picco	#N/D	(MPa)
cur	valore residuo	#N/D	(MPa)
#N/D	#N/D		

STATO DI SFORZO "IN SITU"

k _o	coefficiente di spinta a riposo	1,10	(-)

PARAMETRI ELASTICI

ν	coefficiente di Poisson	0,33	(-)
Gi	modulo di taglio	1	(MPa)
E_i	modulo pressiometrico	2	(MPa)
G sr	modulo di taglio di scarico e ricarico		(MPa)
E _{sr}	modulo pressiometrico di scarico e ricarico		(MPa)

N.B. I valori dei parametri di resistenza e deformabilità dipendono fortemente dai valori di Vo,Po e Vf,Pf definiti dall'utente. Si ritiene più corretto che l'utente esegua una valutazione dei parametri stessi scegliendo non una sola coppia di valori di Vo,Po e Vf,Pf, bensì un campo di variazione degli stessi.