COMMITTENTE

COMUNE DI PALERMO AREA INFRASTRUTTURE E TERRITORIO

PROGETTISTA

ATI:

DOMINIQUE **PERRAULT** ARCHITECTE

(Capogruppo Mandataria)

METROPOLITANA AUTOMATICA LEGGERA DELLA CITTA' DI PALERMO PRIMA LINEA TRATTA FUNZIONALE ORETO/NOTARBARTOLO

PROGETTO PRELIMINARE

PROVE DI LABORATORIO SU CAMPIONI DI TERRENO SONDAGGI da S1B44 a S1B48, S1B51, S1B52, da S2-55 a S2-59

	MESSA	FASE	COMPARTO	DOCUMENT	— I —	SCALA		OME FILE ND_INPL06_	0.pdf
									PROGETTISTA
0	AGOSTO 2006	LIVIIOOIOITE	ELABORATI OI CONSEGNA FII		Speciale	Canzoneri	Checchi	Piscitelli	
REV.	DATA	DESCRIZIONE		REDATTO	CONTROLLATO	APPROVATO	AUTORIZZATO		

Metropolitana Automatica Leggera della Città di Palermo. Prima linea - Oreto-Notarbartolo

Prove di laboratorio

Nel presente elaborato si riportano i risultati delle prove di laboratorio effettuate su 32 campioni indisturbati e 3 campioni rimaneggiati di terreno, prelevati nel corso delle indagini per la realizzazione della Metropolitana Automatica Leggera della Città di Palermo. Prima linea - Oreto-Notarbartolo.

Le prove sono state effettuate su incarico della SYSTRA S.A..

I campioni, pervenuti in laboratorio nei mesi di giugno÷agosto 2006, sono stati descritti singolarmente, specificando il colore, la consistenza, la struttura e l'eventuale presenza di alterazioni.

Sono state effettuate prove di identificazione consistenti nella determinazione del contenuto d'acqua w, dei limiti di consistenza w_p e w_l , della composizione granulometrica, del peso specifico dei grani γ_s e del peso dell'unità di volume γ .

In particolare, la determinazione del contenuto d'acqua w è stata effettuata con il metodo della doppia pesata, secondo quanto prescritto dalla Normativa ASTM D-2216 (1998), quella del limite di liquidità w_l è stata eseguita con il cucchiaio di Casagrande sul materiale passante al setaccio ASTM n.40, utilizzando il metodo dei tre punti, in accordo con la Normativa ASTM D-4318 (2000). Il limite di plasticità w_p è stato determinato secondo quanto previsto nella Normativa ASTM D-4318 (2000).

La determinazione della composizione granulometrica è stata effettuata per stacciatura e sedimentazione, secondo la Normativa ASTM D-422 (1998). In particolare, la quantità di materiale da utilizzare è stata determinata in dipendenza delle dimensioni massime dell'elemento più grosso..

La stacciatura è stata eseguita utilizzando la serie di setacci ASTM aventi apertura delle maglie 3", $2^{"}\frac{1}{2}$, $2^{"}$, $1^{"}\frac{1}{2}$, $1^{"}$, $3/4^{"}$, $3/8^{"}$ e la serie di setacci ASTM n. 4, 8, 16, 20, 40, 80, 120, 200.

La composizione granulometrica della frazione passante al n. 200 ASTM è stata determinata, mediante sedimentazione, con il metodo dell'areometro, impiegando cilindri della capacità di 1 l; le letture ai cilindri sono state effettuate dopo 0,5, 1, 2, 4, 8, 16, 32, 64, 128, 256, 1440 minuti dall'inizio della prova.

I risultati sono diagrammati in grafici che forniscono la percentuale in peso del materiale in funzione del diametro; vengono inoltre riportati la composizione granulometrica del terreno secondo la classificazione A.G.I. e la percentuale in peso della frazione argillosa, corrispondente al diametro d = 0,002 mm.

Il peso specifico dei grani γ_s è stato determinato per mezzo del volumenometro come media di due determinazioni, su materiale preliminarmente essiccato in stufa, passante al setaccio ASTM n. 40.

Il peso dell'unità di volume γ è stato determinato mediante fustella tarata.

Per la determinazione delle caratteristiche di resistenza e di deformabilità dei terreni, sono state effettuate 13 prove di taglio diretto consolidate drenate (CD), 2 prove di compressione semplice e 7 prove di compressione edometrica.

Secondo quanto prescritto dalla Normativa ASTM D-3080 (1998), le prove di taglio diretto CD sono state effettuate, per ciascun campione, su tre provini di forma cilindrica di diametro 6 cm ed altezza 2 cm. La velocità di deformazione è stata posta pari a 0,002 mm/min.

Nel corso delle prove sono stati misurati lo sforzo di taglio τ per mezzo di una cella di carico elettronica e gli spostamenti orizzontali δ_0 e verticali δ_V per mezzo di due trasduttori elettronici.

Sono stati inoltre determinati, per ogni singolo provino, il contenuto d'acqua w iniziale e finale ed il peso dell'unità di volume γ_d , la porosità n ed il grado di saturazione S iniziali.

I risultati delle prove sono stati diagrammati in grafici τ/δ e τ/σ' .

Le prove di compressione semplice sono state eseguite su campioni cilindrici di altezza pari a circa il doppio del diametro secondo la Normativa ASTM D-2166 (2000).

Le prove sono state eseguite per mezzo di una macchina universale GALDABINI PMA60, classe 1; la velocità di deformazione è stata posta pari a 1,6 mm/min.

Nel corso delle prove sono stati misurati la tensione normale σ_V per mezzo di una cella di carico e lo spostamento verticale δ_V del campione mediante un trasduttore elettronico.

Sono stati inoltre determinati il peso dell'unità di volume γ ed il contenuto d'acqua w iniziali.

I risultati delle prove sono stati diagrammati in grafici $\sigma_{\rm v}/\epsilon$.

Le prove di compressione edometrica sono state eseguite in accordo con la Normativa ASTM D-2435 (1996), utilizzando celle edometriche aventi diametro pari a 5 cm ed altezza di 2 cm.

I campioni sono stati sottoposti ad incrementi di carico ad intervalli di 24 h, fino ad una pressione massima $\sigma' = 250 \text{ N/cm}^2$. Successivamente lo scarico è stato eseguito in una o più fasi.

Nel corso delle prove sono stati misurati i cedimenti dei campioni utilizzando comparatori bimillesimali; sono stati inoltre determinati il peso dell'unità di volume γ ed il contenuto d'acqua w iniziali e finali ed il peso secco dell'unità di volume γ_d , il grado di saturazione S e l'indice di porosità e_o iniziali. In corrispondenza dei vari gradini di carico sono stati determinati il modulo di compressione edometrica E_{ed} , il coefficiente di compressibilità volumetrica m_v , il coefficiente di consolidazione c_v ed il coefficiente di permeabilità k.

I risultati delle prove sono stati diagrammati in grafici che illustrano gli andamenti delle deformazioni verticali e dell'indice di porosità in funzione, rispettivamente, del tempo e della pressione applicata. Si riporta inoltre il diagramma $\log E_{ed}/\log \sigma'$.

www.laboratoriometro.it

E-mail: info@laboratoriometro.it

Nelle pagine seguenti sono riportati, nell'ordine, l'elenco dei simboli adottati, il riepilogo di tutte le analisi e prove eseguite sui campioni e delle caratteristiche fisiche determinate; seguono quindi le schede relative alle analisi e prove eseguite sui singoli campioni.

Palermo, agosto 2006

ELENCO DEI SIMBOLI

γ	Peso dell'unità di volume	$\sigma_{\rm v}$	Tensione normale					
γsat	Peso dell'unità di volume del campione saturo	σ_{f}	Tensione normale a rottura					
γ_{i}	Peso dell'unità di volume all'inizio della	σ_1	Tensione assiale					
	prova	σ_3	Pressione di confinamento					
γ_{f}	Peso dell'unità di volume alla fine della	σ_{1f}	Tensione assiale a rottura					
	prova	σ_{t}	Tensione di trazione					
W	Contenuto d'acqua	$(\sigma_1 - \sigma_3)_f$	Tensione deviatorica a rottura					
w_{sat}	Contenuto d'acqua del campione saturo	τ	Tensione tangenziale					
w_i	Contenuto d'acqua all'inizio della prova	τ_{f}	Tensione tangenziale a rottura					
\mathbf{w}_{f}	Contenuto d'acqua alla fine della prova	$\tau_{\mathbf{r}}$	Resistenza residua					
wopt	Contenuto d'acqua all'ottimo di	u	Pressione neutra					
	costipamento	\mathbf{u}_{f}	Pressione neutra a rottura					
G	Analisi granulometrica	3	Deformazione					
U	Coefficiente di uniformità	ϵ_{f}	Deformazione a rottura					
d	Dimensione del grano	δ_x , δ_y	Componenti dello spostamento					
l_{o}	Altezza del campione all'inizio della		orizzontale secondo le direzioni x e y					
	prova	δ	Spostamento orizzontale assoluto					
γd	Peso secco dell'unità di volume	δ_{o} , δ_{v}	Spostamenti orizzontali e verticali					
γdmax	Peso secco dell'unità di volume all'ottimo	δ_{of}	Spostamento orizzontale a rottura					
	di costipamento	Et	Modulo di Young tangente per $\sigma_v = \frac{\sigma_f}{2}$					
$\gamma_{\rm s}$	Peso specifico dei grani	_						
e	Indice dei vuoti	E_s	Modulo di Young secante per $\sigma_v = \frac{\sigma_f}{2}$					
e_{o}	Indice dei vuoti all'inizio della prova	v_{δ}	Velocità media di deformazione per					
e_{f}	Indice dei vuoti alla fine della prova		minuto in percentuale					
n	Porosità	c_{v}	Coefficiente di consolidazione					
n_e	Porosità effettiva delle rocce	E_{ed}	Modulo di compressione edometrica					
S	Grado di saturazione	k	Coefficiente di permeabilità					
$\mathbf{w}_{\mathbf{p}}$	Limite di plasticità	I_s	Indice di resistenza a carico puntuale					
w_1	Limite di liquidità	P	Carico puntuale di rottura					
I_p	Indice di plasticità	I _{dr}	Indice di durabilità					
I_c	Indice di consistenza	I_v	Coefficiente di imbibizione					
$\mathbf{w}_{\mathbf{r}}$	Limite di ritiro	Z	Profondità dalla testa del tubo					
SO	Contenuto di sostanza organica		inclinometrico					
CaCO ₃	Contenuto di carbonato di calcio	M_d	Modulo di deformazione					
σ'	Pressione effettiva	Φ	Azimut					

CS	Prova di compressione semplice	Cost	Prova di costipamento
CE	Prova di compressione edometrica	AS	Modalità AASHO Standard
SW	Prova di rigonfiamento	AM	Modalità AASHO Modificato
TD	Prova di taglio diretto	PEN	Modalità Proctor Energia Normale
TR	Prova di compressione triassiale	PED	Modalità Proctor Energia Doppia
UU	Prova non consolidata non drenata	PET	Modalità Proctor Energia Tripla
CU	Prova consolidata non drenata	CBR	Indice di portanza Californiana
CD	Prova consolidata drenata	ES	Equivalente in sabbia

NORMATIVE SEGUITE PER L'ESECUZIONE DELLE PROVE

ASTM American Society for Testing Materials

BSI British Standard Institution

CNR Consiglio Nazionale delle Ricerche

ISRM International Society for Rock Mechanics

UNI Unificazione Nazionale Italiana

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

RIEPILOGO PROVE ESEGUITE SUI CAMPIONI DI TERRENO

	THE !	EUUU	1110 12	EDEGCI	12 501	01111111)	IEKKEN		
Sondaggio		S1B44		S 11	B45	S11	B46	S1B47	S1B48	S1B51
Campione	1	2	3	1	2	1	2	1	1	1
Profondità da m	13.00	17.00	22.00	20.50	23.50	34.50	43.00	18.00	23.00	24.50
a m		17.50	22.50	21.00	24.00	35.00	43.50	18.50	23.50	25.00
Riconoscimento e descrizione	•	•	•	•	•	•	•	•	•	•
Data	19/6/06	3/7/06	14/7/06	24/7/06	24/7/06	24/7/06	19/7/06	24/7/06	3/8/06	3/8/06
			CAR	ATTERI	STICHE	FISICHE				
γ	•	•								
Data	19/6/06	4/7/06								
$\gamma_{ m d}$										
Data										
$\gamma_{ m s}$	•	•	•	•	•	•		•		
Data	17/7/06	3/8/06	18/7/06	31/7/06	31/7/06	31/7/06		31/7/06		
G	•		•	•	•	•		•		
Data	20/6/06		18/7/06	31/7/06	26/7/06	27/7/06		26/7/06		
W	•	•	•	•	•	•	•	•	•	•
Data	19/6/06	3/7/06	14/7/06	24/7/06	24/7/06	24/7/06	19/7/06	24/7/06	3/8/06	3/8/06
$\mathbf{w_p}$	•	•								
Data	14/7/06	2/8/06								
$\mathbf{w_l}$	•	•								
Data	14/7/06	2/8/06								
$\mathbf{w_s}$										
Data										
			I	PROVE M	IECCAN	ICHE				
CE	•									
Data	22/6/06									
C S										
Data										
TD (CD)	•	•								
Data	19/6/06	4/7/06								
TD (Res)										
Data										
TR (CU)										
Data										
COST										
Data										

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

RIEPILOGO PROVE ESEGUITE SUI CAMPIONI DI TERRENO

	TTIEST .	12000	IKOVE	EDEGCI	12 501	011111111		BITTEL	<u> </u>	
Sondaggio		S2-52				S2-55			S2-	-56
Campione	1	2	3	1	2	3	4	R1	1	2
Profondità da 1	m 4.50	18.50	22.20	7.50	10.50	18.00	24.50	41.20	9.00	11.00
a 1	m 4.70	19.00	22.50	8.00	11.00	18.50	25.00	41.50	9.40	11.50
Riconoscimento descrizione	e •	•	•	•	•	•	•	•	•	•
Data	19/7/06	24/7/06	24/7/06	16/6/06	16/6/06	16/6/06	22/6/06	27/7/06	7/7/06	7/7/06
			CAR	RATTERIS	STICHE	FISICHE				
γ	•			•	•		•		•	•
Data	19/7/06			16/6/06	16/6/06		22/6/06		7/7/06	7/7/06
$\gamma_{ m d}$										
Data										
$\gamma_{ m s}$	•	•	•	•	•		•		•	•
Data	3/8/06	31/7/06	31/7/06	30/6/06	18/7/06		11/7/06		11/7/06	11/7/06
G	•	•	•	•	•		•		•	•
Data	24/7/06	31/7/06	28/7/06	19/6/06	20/6/06		28/6/06		11/7/06	11/7/06
w	•	•	•	•	•	•	•	•	•	•
Data	19/7/06	24/7/06	24/7/06	16/6/06	16/6/06	16/6/06	22/6/06	27/7/06	7/7/06	7/7/06
$\mathbf{w}_{\mathbf{p}}$	•			•	•		•			
Data	2/8/06			29/6/06	14/7/06		10/7/06			
$\mathbf{w_l}$	•			•	•		•			
Data	2/8/06			29/6/06	14/7/06		10/7/06			
$\mathbf{w_s}$										
Data										
]	PROVE M	IECCAN	ICHE				
СЕ	•			•	•				•	•
Data	21/7/06			3/7/06	4/7/06				12/7/06	12/7/06
CS				•			•			
Data				6/7/06			6/7/06			
TD (CD)	•			•	•		•		•	•
Data	19/7/06			16/6/06	16/6/06		22/6/06		7/7/06	7/7/06
TD (Res)										
Data										
TR (CU)										
Data										
COST										
Data										

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

RIEPILOGO PROVE ESEGUITE SUI CAMPIONI DI TERRENO

	11121	LOGO I	ROVE	ESEGUI	IL SCI	C/ XIVII IC	וע ואל	LIKKEI	0	
Sondaggio		S2-56			S2	257	S2-58			
Campione	3	4	5	1	2	3	4	1	2	3
Profondità da m	17.50	21.00	23.30	16.00	20.50	23.60	28.50	19.80	21.50	24.00
a m	18.00	21.40	23.70	16.50	21.00	24.00	29.00	20.30	22.00	24.50
Riconoscimento e descrizione	•	•	•	•	•	•	•	•	•	•
Data	7/7/06	14/7/06	14/7/06	7/7/06	12/7/06	13/7/06	13/7/06	7/7/06	12/7/06	13/7/06
			CAR	ATTERIS	STICHE 1	FISICHE				
γ	•	•		•				•		
Data	17/7/06	17/7/06		10/7/06				13/7/06		
$\gamma_{ m d}$										
Data										
$\gamma_{ m s}$	•	•	•	•		•	•	•	•	•
Data	11/7/06	18/7/06	18/7/06	12/7/06		18/7/06	18/7/06	17/7/06	17/7/06	17/7/06
G	•	•	•	•		•	•	•	•	•
Data	13/7/06	18/7/06	18/7/06	11/7/06		20/7/06	18/7/06	11/7/06	17/7/06	18/7/06
W	•	•	•	•	•	•	•	•	•	•
Data	7/7/06	14/7/06	14/7/06	7/7/06	12/7/06	13/7/06	13/7/06	7/7/06	12/7/06	13/7/06
$\mathbf{w}_{\mathbf{p}}$								•		
Data								14/7/06		
$\mathbf{w_l}$								•		
Data								14/7/06		
$\mathbf{w_s}$										
Data										
			F	PROVE M	IECCANI	CHE				
CE	•									
Data	19/7/06									
CS										
Data										
TD (CD)	•	•		•				•		
Data	17/7/06	17/7/06		10/7/06				13/7/06		
TD (Res)										
Data										
TR (CU)										
Data										
COST										
Data										

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

RIEPILOGO PROVE ESEGUITE SUI CAMPIONI DI TERRENO

	KILI	LOGO I	ROVE	ESEGUI	112 501	CAMPIONI D	1 IEKKEI	0	
Sondaggio	S2-58		S2	-59					
Campione	4	R1	1	R2	2				
Profondità da m	27.00	14.00	21.00	24.40	25.80				
a m	27.50	14.30	21.50	24.80	26.00				
Riconoscimento e descrizione	•	•	•	•	•				
Data	14/7/06	27/7/06	24/7/06	27/7/06	24/7/06				
			CAR	ATTERIS	STICHE	FISICHE			
γ					•				
Data					25/7/06				
$\gamma_{ m d}$									
Data									
$\gamma_{ m s}$	•		•		•				
Data	18/7/06		31/7/06		31/7/06				
G	•		•		•				
Data	24/7/06		27/7/06		27/7/06				
w	•	•	•	•	•				
Data	14/7/06	27/7/06	24/7/06	27/7/06	24/7/06				
$\mathbf{w}_{\mathbf{p}}$									
Data									
$\mathbf{w_l}$									
Data									
$\mathbf{w_s}$									
Data									
			F	PROVE M	IECCAN!	ICHE			
CE									
Data									
CS									
Data									
TD (CD)					•				
Data					25/7/06				
TD (Res)									
Data									
TR (CU)									
Data									
COST									
Data									

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

RIEPILOGO CARATTERISTICHE FISICHE DEI TERRENI

Sondaggio		S1B44		S11	B45	S1B46 S		S1B47	S1B48	S1B51
Campione	1	2	3	1	2	1	2	1	1	1
Profondità da m	13.00	17.00	22.00	20.50	23.50	34.50	43.00	18.00	23.00	24.50
a m	13.50	17.50	22.50	21.00	24.00	35.00	43.50	18.50	23.50	25.00
γ [kN/m ³]	20.3	20.8								
$\gamma_{\rm d} [{\rm kN/m^3}]$										
$\gamma_{\rm s} [{\rm kN/m^3}]$	26.7	26.8	26.8	26.4	26.5	27.1		26.7		
W	0.15	0.14	0.16	0.24	0.26	0.23	0.20	0.27	0.27	0.25
W _P	0.19	0.20								
W_{L}	0.38	0.33								
w_{S}										
I_P	0.19	0.13								
$I_{\rm C}$	1.21	1.46								
n	0.36	0.34								
S	0.90	0.90								
U										
% < d = 0,002 mm	26		33	7	15	31		23		
SO [%]										
CaCO ₃ [%]										
k [cm/sec]										

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

RIEPILOGO CARATTERISTICHE FISICHE DEI TERRENI

Sondaggio		S2-52				S2-55			S2	-56
Campione	1	2	3	1	2	3	4	R1	1	2
Profondità da m	4.50	18.50	22.20	7.50	10.50	18.00	24.50	41.20	9.00	11.00
a m	4.70	19.00	22.50	8.00	11.00	18.50	25.00	41.50	9.40	11.50
γ [kN/m ³]	19.8			19.8	18.6		19.4		18.5	17.9
$\gamma_{\rm d} [{\rm kN/m^3}]$										
$\gamma_{\rm s} [{\rm kN/m^3}]$	26.7	26.7	26.5	27.0	26.8		27.2		26.4	26.5
W	0.26	0.29	0.33	0.28	0.36	0.33	0.30	0.27	0.35	0.39
W_{P}	0.18			0.17	0.19		0.20			
w_{L}	0.37			0.48	0.44		0.36			
w_{S}										
I_{P}	0.19			0.31	0.25		0.16			
$I_{\rm C}$	0.58			0.65	0.32		0.38			
n	0.40			0.42	0.49		0.44		0.48	0.52
S	0.94			1.00	1.00		0.98		1.00	0.99
U										
% < d = 0,002 mm	40	20	16	26	40		30		19	20
SO [%]										
CaCO ₃ [%]										
k [cm/sec]										

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

RIEPILOGO CARATTERISTICHE FISICHE DEI TERRENI

Sondaggio		S2-56			S2	2.57			S2-58	
Campione	3	4	5	1	2	3	4	1	2	3
Profondità da m	17.50	21.00	23.30	16.00	20.50	23.60	28.50	19.80	21.50	24.00
a m	18.00	21.40	23.70	16.50	21.00	24.00	29.00	20.30	22.00	24.50
γ [kN/m ³]	18.4	18.7		19.9				19.7		
$\gamma_{\rm d} [{\rm kN/m^3}]$										
$\gamma_{\rm s} [{\rm kN/m^3}]$	26.4	26.8	26.7	26.6		26.6	27.3	27.0	27.2	27.2
W	0.29	0.35	0.30	0.26	0.31	0.37	0.33	0.27	0.28	0.31
W _P								0.18		
W_{L}								0.36		
w _s										
I_P								0.18		
$I_{\rm C}$								0.50		
n	0.49	0.47		0.40				0.43		
S	0.99	0.97		1.00				1.00		
U										
% < d = 0,002 mm	14	20	23	24		51	27	36	31	35
SO [%]										
CaCO ₃ [%]										
k [cm/sec]										

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

RIEPILOGO CARATTERISTICHE FISICHE DEI TERRENI

Sondaggio	S2-58		S2	-59				
Campione	4	R1	1	R2	2			
Profondità da m	27.00	14.00	21.00	24.40	25.80			
a m	27.50	14.30	21.50	24.80	26.00			
γ [kN/m³]					19.1			
$\gamma_{\rm d} [{\rm kN/m^3}]$								
$\gamma_{\rm s} [{\rm kN/m^3}]$	27.4		26.7		26.8			
W	0.36	0.11	0.29	0.33	0.32			
W_{P}								
$w_{\rm L}$								
w_{s}								
I_P								
I_{C}								
n					0.46			
S					1.00			
U								
% < d = 0,002 mm	46		19		47			
SO [%]								
CaCO ₃ [%]								
k [cm/sec]								

Rif. verbale di accettazione 04/2006 Certificato n. -

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S1B44 Campione 1 Profondità da m 13.00 a m 13.50

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo

Data di arrivo in laboratorio 16/6/2006

Data di apertura 19/6/2006

Contenitore Fustella di plastica

Dimensioni 1 = 34 cm

Condizioni campione Mediocri

Prove eseguite γ , γ_s , G, w, w_p , w_l , CE, TD (CD)

Rp [N/mm²] Descrizione

(Normativa ASTM D2487/00 – ASTM D2488/00)

Argilla di colore grigio scuro, consistente, $w_n < w_p$. Struttura a scaglie di forma prismatica, debolmente serrate.

0.32->0.50-0.41->0.50-

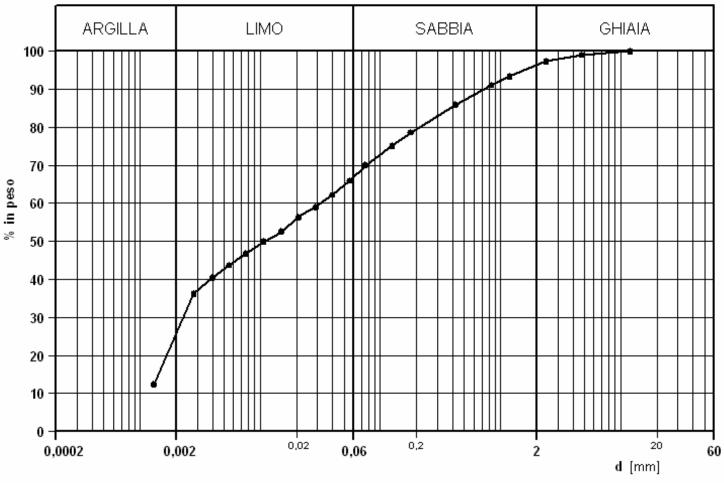
Lo Sperimentatore

Salvatore Febo

Il Direttore del Laboratorio

Ing. Gabriele Speciale

Cap. Soc. € 51.480,00 int. vers. - C.C.I.A.A. di PA 132403 - Trib. PA Soc. 27277 - Partita I.V.A. 03317020828


www.laboratoriometro.it

E-mail: info@laboratoriometro.it

Verbale di accettazione 04/2006	Certificato n° -
Richiedente SYSTRA S.A.	
Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-N	lotarbartolo
Sondaggio S1B44 Campione 1 Profondità da m	13.00 am 13.50
Data inizio prova 20/6/2006	Data fine prova 7/7/2006

ANALISI GRANULOMETRICA - ASTM D-422 (2002)

Composizione granulometrica Limo con sabbia con argilla

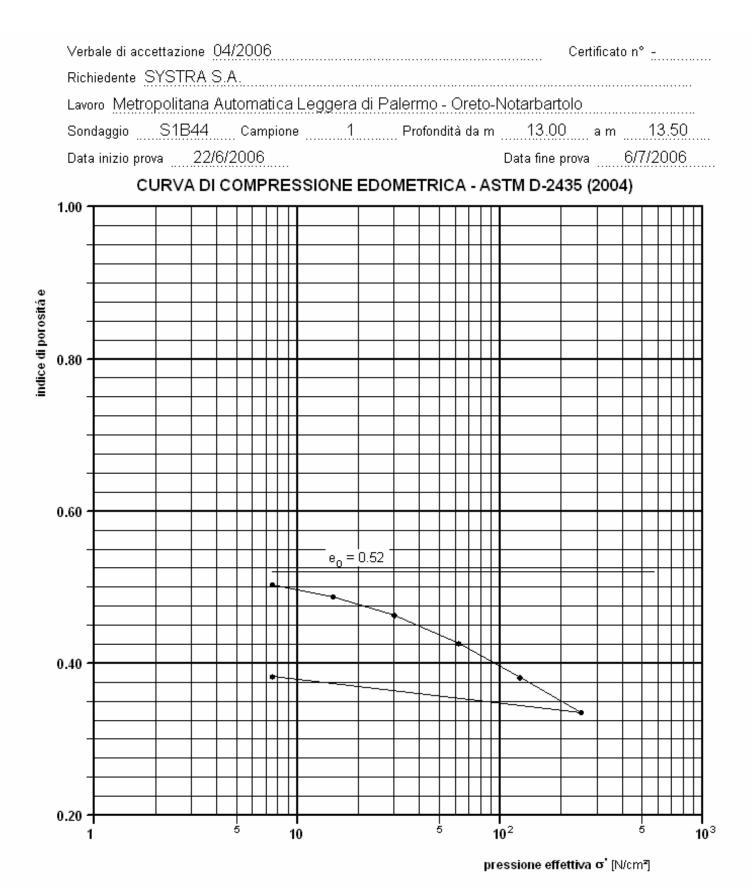
$$U = \frac{d_{60}}{d_{10}} = \frac{d_{60}}{d_{10}} = \frac{26}{d_{10}}$$

Note

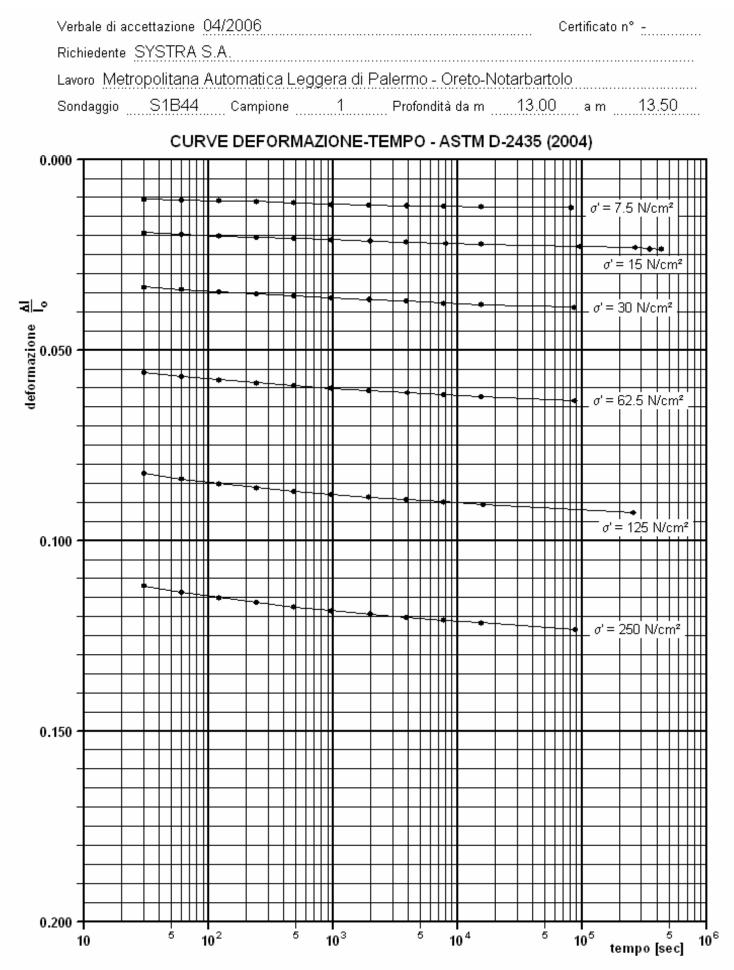
Lo Sperimentatore Salvatore Febo

Cap. Soc. € 51.480,00 int. vers. - C.C.I.A.A. di PA 132403 - Trib. PA Soc. 27277 - Partita I.V.A. 03317020828

www laboratoriometro it


E-mail: info@laboratoriometro.it

Verbale di accettazione 04/2006							Certifica	to n°		
Richiedente SYSTRA S.A.										
Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo										
Sondaggio S1B44	Camı	pione	1	Profon	dità da m	13.0	0am	13.	50	
Data inizio prova22	/6/2006					Data fine	prova	6/7/20	06	
PROVA DI COMPRESSIONE EDOMETRICA - ASTM D-2435 (2004)										
Dimensioni del pro	vino:	dian	netro d = 6	50 mm		altezza	l _o = 20 mi	m		
		Carati	teristiche	iniziali						
Peso d	ell'unitá di	volume		γ	=	20.7	kN/m³			
Peso s	ecco dell'i	unitá di vol	lume	γ_{i}	d =	17.5	kN/m³			
Peso s	pecifico			γ	s =	26.7	kN/m³			
Conten	uto d'acqu	ıa		W	=	0.18				
Indice (di porositá			e,	o =(0.52				
Grado i	di saturazi	ione		S	S = 0.92					
		Risulta	ati della į	orova						
Peso d	ell'unitá di	volume fii	nale	$\gamma_{\rm f}$	f =	22.8	kN/m³			
Conten	uto d'acqu	ıa finale		W	$W_f = 0.14$					
Pressione 7.5 15.0 30.0 σ' [N/cm²]					125.0	250.0				
Indice di porositá	0.503	0.487	0.463	0.426	0.381	0.335				
e scarico	0.382									
Note										


Lo Sperimentatore Salvatore Febo

Lo Sperimentatore Salvatore Febo

Rif. verbale di accettazione: 04/2006 Certificato n. -

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S1B44 Campione 1 Profondità da m 13.00 a m 13.50

PROVA DI COMPRESSIONE EDOMETRICA GRANDEZZE CARATTERISTICHE

σ ′ [N/cm²]	Eed [N/cm ²]	m _V [cm ² /N]	c _V [cm ² /sec]	k [cm/sec]
7.5 ÷ 15.0	681	1.5×10^{-3}		
15.0 ÷ 30.0	956	1.0×10^{-3}		
30.0 ÷ 62.5	1279	7.8×10^{-4}		
62.5 ÷ 125.0	1991	5.0×10^{-4}		
125.0 ÷ 250.0	3696	2.7×10^{-4}		

note

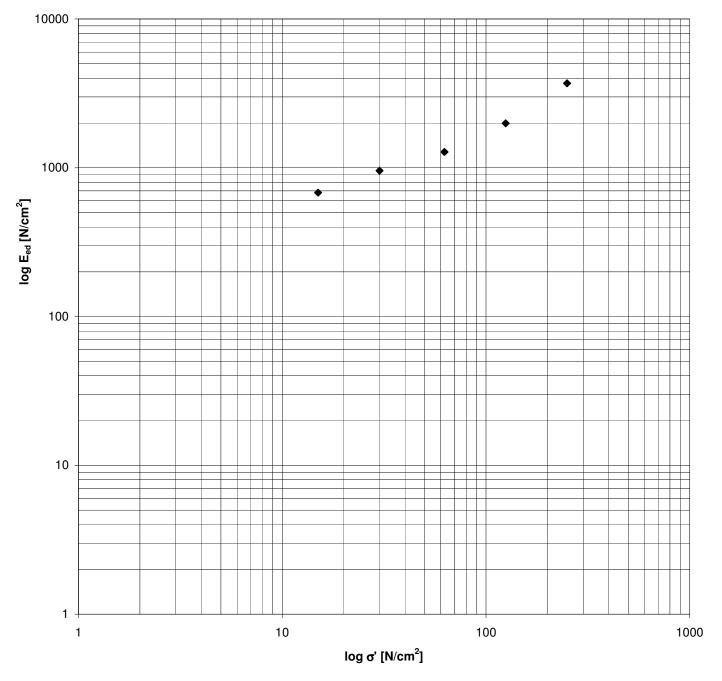
Lo Sperimentatore

Il Direttore del Laboratorio

Salvatore Febo

Ing. Gabriele Speciale

Verbale di accettazione 04/2006


Certificato n. -

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

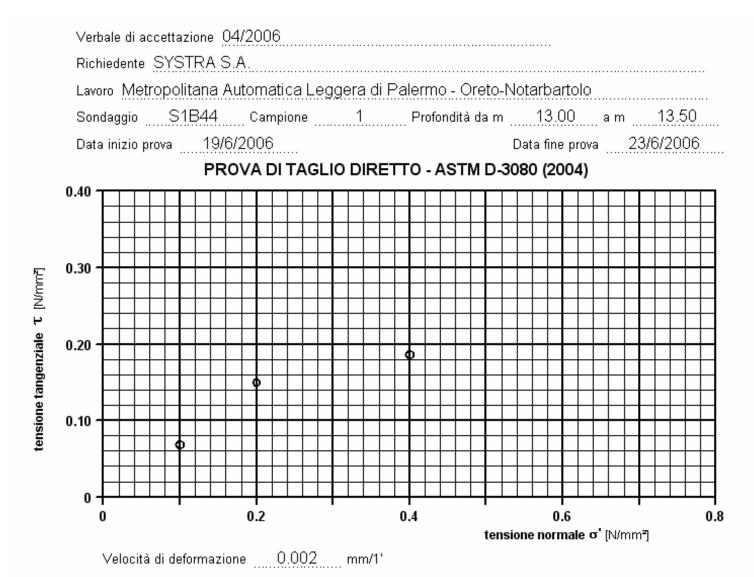
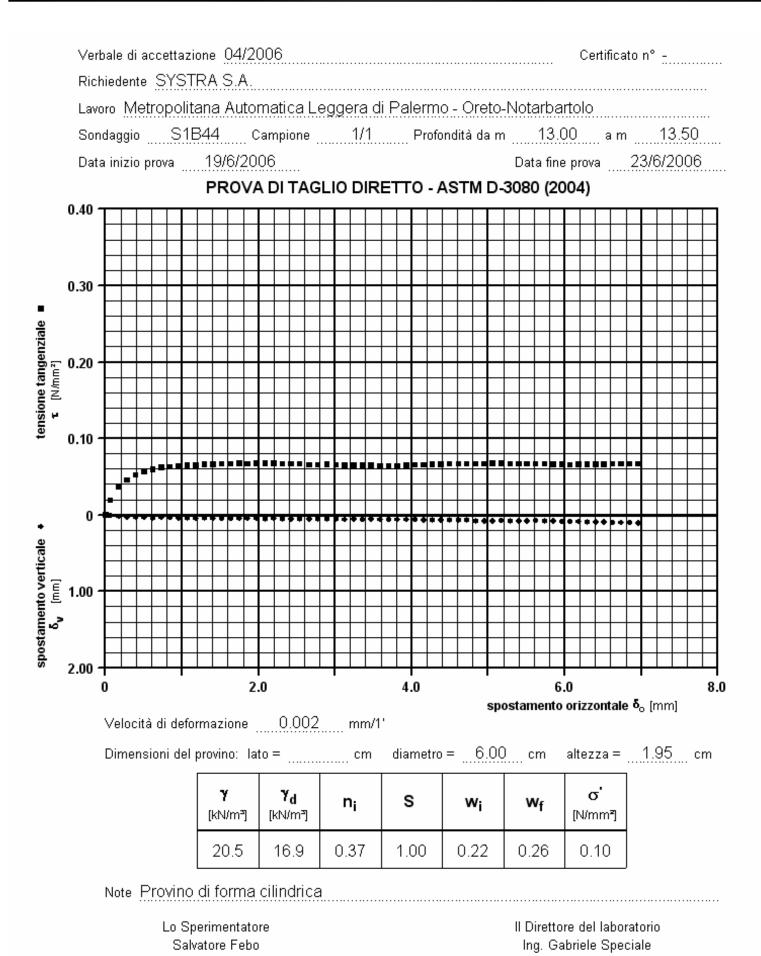
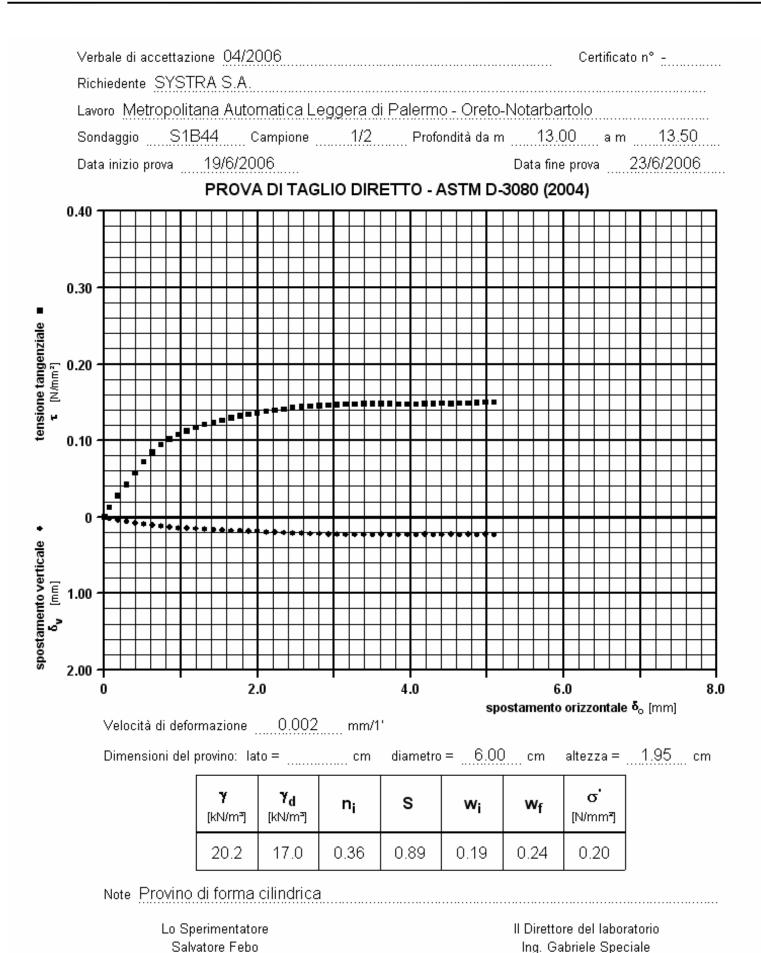

Sondaggio S1B44 Campione 1 Profondità da m 13,00 a m 13,50

diagramma log E_{ed} / log σ'

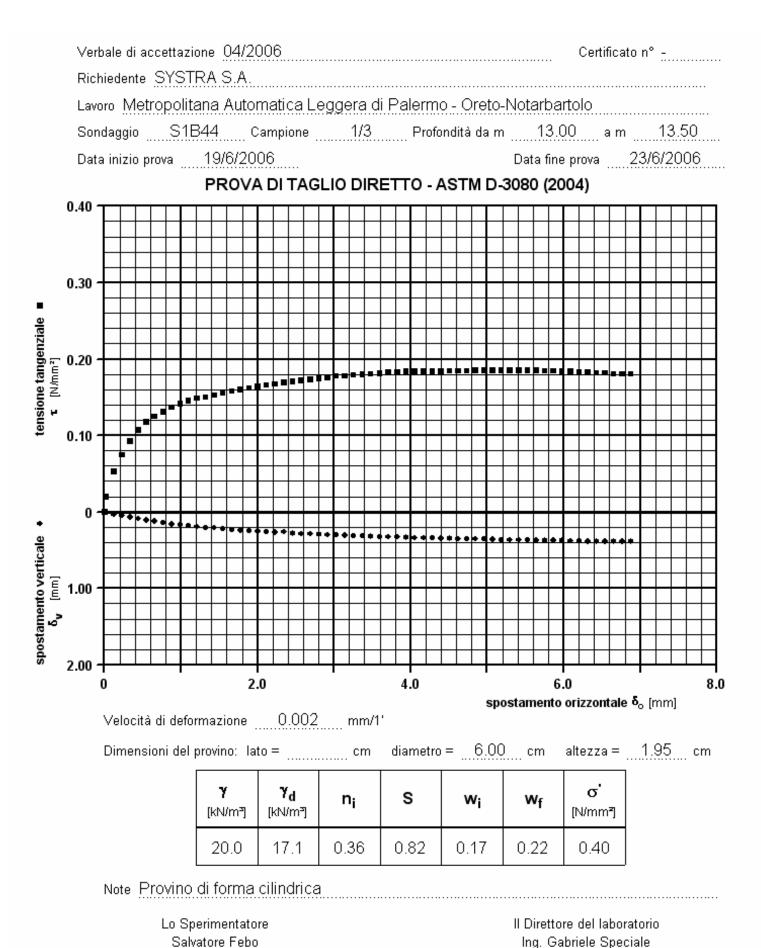
Lo Sperimentatore Salvatore Febo



Provino	y [kN/m³]	Υ _d [kN/m³]	n _i	s	w _i	w _f	ፒ _f [N/mm ²]	σ' [N/mm²]	δ _{of} [mm]
1	20.5	16.9	0.37	1.00	0.22	0.26	0.068	0.10	1.97
2	20.2	17.0	0.36	0.89	0.19	0.24	0.150	0.20	4.94
3	20.0	17.1	0.36	0.82	0.17	0.22	0.186	0.40	4.84


Note Prova consolidata drenata

Lo Sperimentatore Salvatore Febo



www.laboratoriometro.it

E-mail: info@laboratoriometro.it

Rif. verbale di accettazione 04/2006

Certificato n. -

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S1B44 Campione 1 Profondità da m 13,00 a m 13,50

RISULTATI DELLA PROVA DI TAGLIO DIRETTO - ASTM D-3080 (2004)

Data inizio prova 19/6/2006

Data fine prova 23/6/2006

Data inizio	prova 19/6	/2006				Data fine prova 23/6/2006			
Provino	1			2			3		
σ' [N/mm²] 0.1			0.2			0.4		
δ _o [mm]	τ [N/mm²]	δ _v [mm]	δ _o [mm]	τ [N/mm²]	δ_v [mm]	δ_{o} [mm]	τ [N/mm²]	δ _v [mm]	
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
0.061	0.019	0.005	0.062	0.013	0.020	0.022	0.020	0.002	
0.171	0.037	0.015	0.173	0.028	0.040	0.121	0.053	0.029	
0.281	0.046	0.022	0.286	0.043	0.057	0.225	0.075	0.045	
0.391	0.052	0.027	0.397	0.058	0.074	0.329	0.093	0.064	
0.504	0.057	0.029	0.508	0.073	0.089	0.435	0.108	0.084	
0.616	0.060	0.034	0.621	0.085	0.104	0.544	0.118	0.103	
0.729	0.062	0.032	0.734	0.095	0.119	0.650	0.126	0.119	
0.841	0.063	0.032	0.848	0.102	0.131	0.761	0.132	0.136	
0.954	0.064	0.034	0.961	0.108	0.141	0.872	0.137	0.153	
1.066	0.065	0.036	1.075	0.113	0.146	0.984	0.142	0.165	
1.179	0.065	0.041	1.190	0.117	0.151	1.092	0.146	0.179	
1.291	0.066	0.039	1.304	0.121	0.158	1.206	0.149	0.189	
1.404	0.067	0.044	1.420	0.124	0.161	1.317	0.151	0.201	
1.516	0.067	0.044	1.533	0.127	0.170	1.431	0.153	0.205	
1.631	0.067	0.046	1.651	0.130	0.175	1.544	0.156	0.217	
1.743	0.068	0.046	1.765	0.133	0.178	1.658	0.158	0.227	
1.854	0.067	0.046	1.878	0.135	0.180	1.771	0.161	0.234	
1.968	0.068	0.046	1.994	0.137	0.185	1.885	0.162	0.241	
2.081	0.068	0.049	2.110	0.138	0.193	1.999	0.164	0.248	
2.193	0.068	0.046	2.226	0.140	0.198	2.112	0.166	0.253	
2.308	0.067	0.049	2.341	0.141	0.200	2.226	0.168	0.260	
2.421	0.067	0.053	2.457	0.143	0.208	2.339	0.169	0.255	
2.536	0.067	0.053	2.571	0.145	0.210	2.453	0.171	0.272	
2.656	0.066	0.053	2.689	0.145	0.215	2.567	0.172	0.279	
2.770	0.066	0.053	2.805	0.146	0.217	2.683	0.174	0.284	
2.888	0.066	0.053	2.921	0.147	0.222	2.796	0.175	0.286	
3.008	0.066	0.053	3.037	0.147	0.225	2.910	0.177	0.294	
3.123	0.065	0.056	3.152	0.148	0.227	3.021	0.178	0.298	
3.238	0.065	0.053	3.268	0.148	0.227	3.134	0.178	0.303	
3.352	0.065	0.056	3.384	0.148	0.227	3.250	0.179	0.308	
3.467	0.065	0.053	3.497	0.148	0.227	3.364	0.180	0.310	
3.582	0.065	0.056	3.613	0.148	0.225	3.475	0.181	0.315	
3.697	0.065	0.056	3.727	0.148	0.227	3.591	0.181	0.320	
3.812	0.064	0.056	3.840	0.148	0.227	3.705	0.183	0.320	
3.927	0.065	0.056	3.956	0.148	0.227	3.821	0.183	0.322	
4.040	0.066	0.058	4.069	0.148	0.227	3.934	0.184	0.327	
4.154	0.066	0.061	4.183	0.148	0.225	4.050	0.184	0.332	
4.269	0.066	0.063	4.296	0.149	0.227	4.164	0.184	0.334	

Lo Sperimentatore

Salvatore Febo

Il Direttore del Laboratorio

Ing. Gabriele Speciale

www.laboratoriometro.it

E-mail: info@laboratoriometro.it

Rif. verbale di accettazione 04/2006

Certificato n. -

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S1B44 Campione 1 Profondità da m 13,00 a m 13,50

RISULTATI DELLA PROVA DI TAGLIO DIRETTO - ASTM D-3080 (2004)

Data inizio prova 19/6/2006

Data fine prova 23/6/2006

Data IIII210 piova 19/0/2000	Data lille prova 25/6/2000	
Provino 1	2	3
σ' [N/mm²] 0.1	0.2	0.4
δ_0 [mm] τ [N/mm ²] δ_V [mm]	$\delta_{\rm o}$ [mm] τ [N/mm ²] $\delta_{\rm v}$ [mm]	$\delta_{\rm o}$ [mm] τ [N/mm ²] $\delta_{\rm v}$ [mm]
4.382 0.066 0.063	4.409 0.149 0.227	4.278 0.184 0.337
4.494 0.067 0.063	4.523 0.149 0.225	4.391 0.184 0.341
4.609 0.067 0.063	4.636 0.149 0.227	4.502 0.185 0.341
4.719 0.067 0.063	4.749 0.149 0.225	4.616 0.185 0.346
4.834 0.067 0.075	4.860 0.150 0.227	4.729 0.185 0.346
4.947 0.067 0.075	4.974 0.150 0.225	4.843 0.186 0.351
5.057 0.068 0.075	5.087 0.150 0.227	4.957 0.186 0.351
5.169 0.068 0.073		5.070 0.185 0.356
5.284 0.067 0.075		5.181 0.185 0.360
5.397 0.067 0.075 5.507 0.067 0.075		5.295 0.186 0.360 5.409 0.186 0.363
5.617 0.067 0.073 5.617 0.067 0.073		5.522 0.185 0.363
5.732 0.067 0.075		
5.732 0.067 0.075 5.844 0.067 0.075		5.636 0.186 0.365 5.747 0.185 0.368
5.957 0.067 0.085		5.858 0.185 0.370
6.067 0.066 0.085		5.972 0.184 0.370
6.179 0.066 0.085		6.085 0.184 0.377
6.292 0.067 0.090		6.196 0.184 0.377
6.402 0.066 0.090		6.312 0.183 0.380
6.512 0.067 0.090		6.424 0.182 0.380
6.622 0.067 0.095		6.537 0.182 0.380
6.734 0.067 0.097		6.648 0.181 0.384
6.847 0.067 0.097		6.759 0.181 0.384
6.957 0.067 0.100		6.873 0.181 0.384
0.00.		0.070

Lo Sperimentatore Salvatore Febo

Rif. verbale di accettazione 04/2006 Certificato n. -

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S1B44 Campione 2 Profondità da m 17.00 a m 17.50

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo

Data di arrivo in laboratorio 16/6/2006

Data di apertura 3/7/2006

Contenitore Fustella di plastica

Dimensioni l = 36 cm

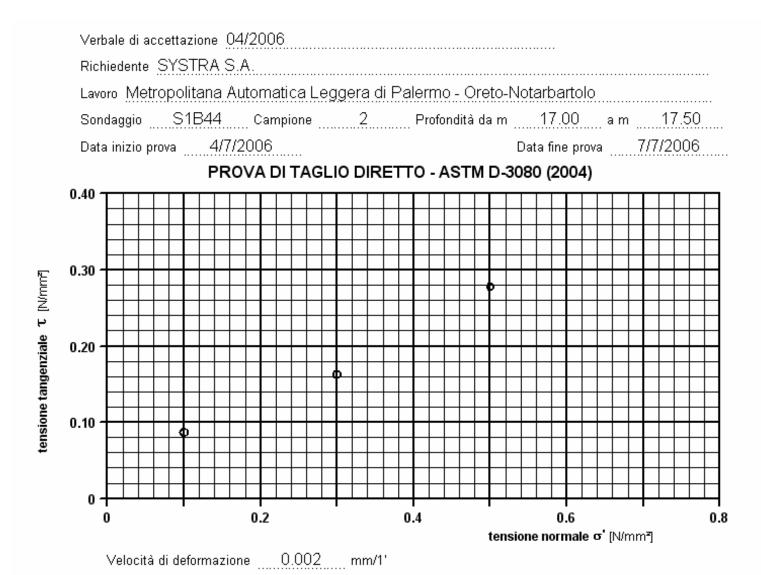
Condizioni campione Mediocri

Prove eseguite γ , γ_s , w, w_p, w_l, TD (CD)

Rp [N/mm²] Descrizione

(Normativa ASTM D2487/00 – ASTM D2488/00)

Argilla ed argillite di colore grigio, da consistente a molto consistente, con

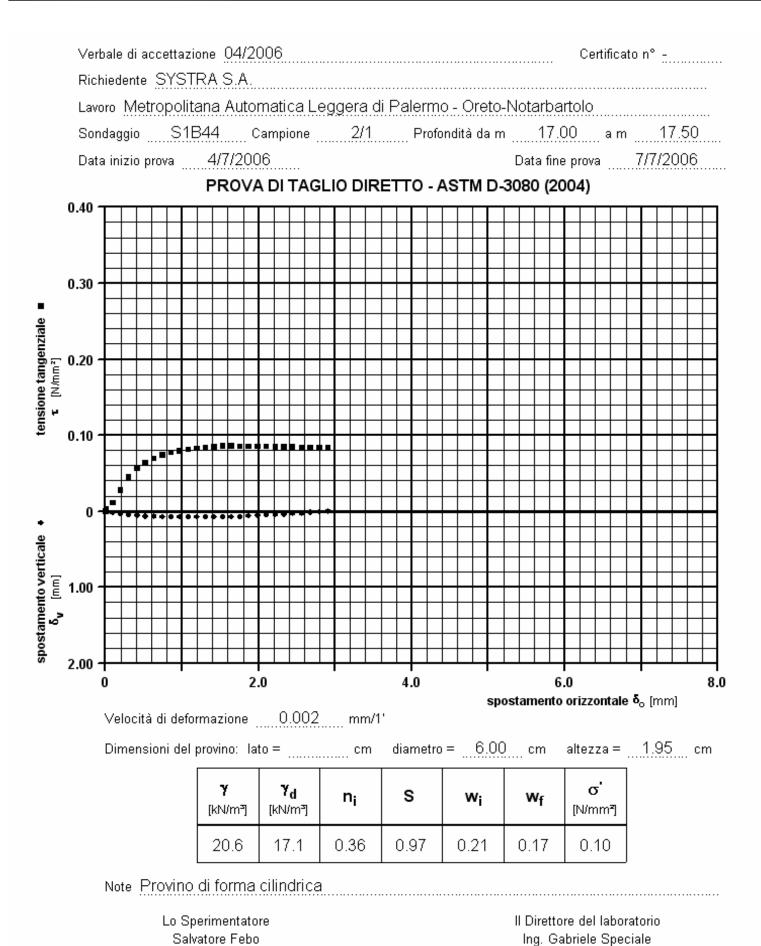

noduli duri di forma allungata.

Lo Sperimentatore

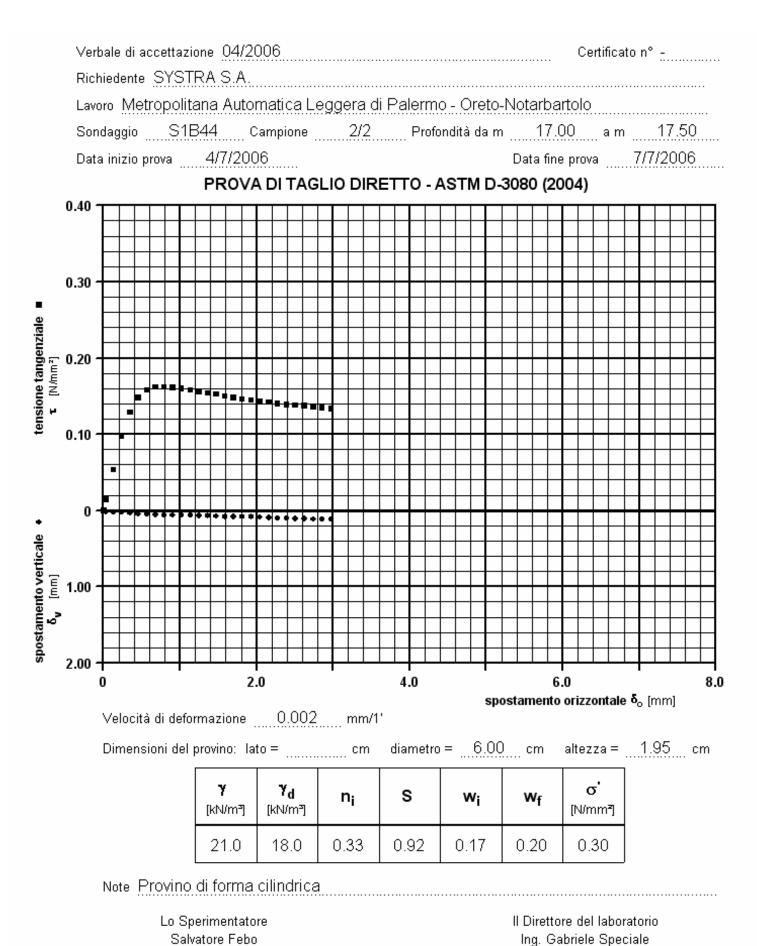
Salvatore Febo

Il Direttore del Laboratorio

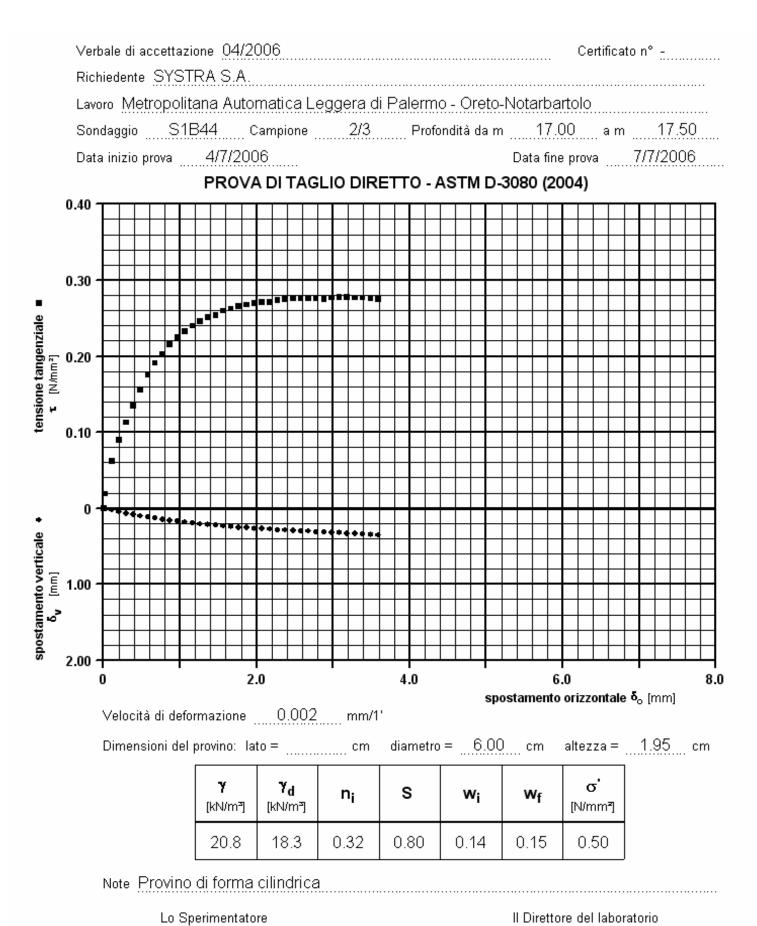
Ing. Gabriele Speciale



Provino	y [kN/m³]	Υ _d [kN/m³]	ni	s	w _i	w _f	τ _f [N/mm²]	σ' [N/mm²]	δ _{of} [mm]
1	20.6	17.1	0.36	0.97	0.21	0.17	0.087	0.10	1.60
2	21.0	18.0	0.33	0.92	0.17	0.20	0.163	0.30	0.72
3	20.8	18.3	0.32	0.80	0.14	0.15	0.278	0.50	3.18


Note Prova consolidata drenata

Lo Sperimentatore Salvatore Febo



Ing. Gabriele Speciale

Salvatore Febo

www.laboratoriometro.it E-mail: info@laboratoriometro.it

Certificato n. -

Rif. verbale di accettazione 04/2006

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S1B44 Campione 2

Profondità da m 17,00 a m 17,50

RISULTATI DELLA PROVA DI TAGLIO DIRETTO - ASTM D-3080 (2004)

Data inizio prova 4/7/2006

Data fine prova 7/7/2006

Provino 1			2			3	
σ' [N/mm²] 0.1			0.3			0.5	
C. [res res] [D1/	21 2 []	C []	DN1/ 21	2 [C []	FN1/ 21	C [mama]
$\delta_{\rm o}$ [mm] τ [N/m	=	δ_{o} [mm]			δ_{o} [mm]		
0.000 0.00		0.000	0.000	0.000	0.000	0.000	0.000
0.007 0.00		0.025	0.015	0.012	0.005	0.000	0.000
0.093 0.01		0.123	0.054	0.015	0.022	0.019	0.007
0.191 0.02		0.232	0.097	0.020	0.104	0.062	0.019
0.296 0.04		0.343	0.129	0.032	0.196	0.090	0.043
0.408 0.05		0.451	0.148	0.042	0.288	0.113	0.062
0.516 0.06		0.562	0.158	0.044	0.382	0.135	0.079
0.626 0.07		0.675	0.162	0.049	0.476	0.156	0.095
0.741 0.07		0.789	0.162	0.054	0.573	0.176	0.110
0.851 0.07		0.902	0.162	0.059	0.669	0.191	0.124
0.963 0.08		1.015	0.161	0.059	0.766	0.203	0.141
1.076 0.08		1.129	0.158	0.059	0.863	0.216	0.155
1.191 0.08		1.242	0.156	0.064	0.962	0.225	0.165
1.301 0.08		1.356	0.154	0.064	1.059	0.233	0.179
1.416 0.08		1.469	0.153	0.069	1.158	0.240	0.191
1.528 0.08		1.582	0.151	0.074	1.257	0.246	0.201
1.643 0.08		1.696	0.149	0.077	1.358	0.252	0.210
1.756 0.08		1.809	0.146	0.077	1.460	0.255	0.217
1.868 0.08		1.925	0.145	0.079	1.559	0.260	0.227
1.983 0.08		2.038	0.144	0.084	1.660	0.263	0.236
2.098 0.08		2.154	0.142	0.089	1.762	0.266	0.246
2.213 0.08		2.270	0.141	0.094	1.863	0.268	0.251
2.328 0.08		2.388	0.139	0.099	1.965	0.270	0.260
2.443 0.08		2.504	0.138	0.101	2.066	0.272	0.265
2.560 0.08		2.620	0.138	0.106	2.168	0.272	0.270
2.673 0.08		2.736	0.136	0.109	2.269	0.274	0.279
2.790 0.08		2.854	0.135	0.109	2.371	0.276	0.284
2.905 0.08	4 -0.002	2.972	0.134	0.109	2.472	0.276	0.291
					2.571	0.277	0.294
					2.673	0.277	0.298
					2.774	0.277	0.306
					2.876	0.276	0.308
					2.975	0.278	0.315
					3.079	0.278	0.317
					3.178	0.278	0.327
					3.279	0.278	0.327
					3.383	0.278	0.334
					3.485	0.277	0.339
					3.586	0.275	0.346

Lo Sperimentatore

Salvatore Febo

Il Direttore del Laboratorio

Ing. Gabriele Speciale

Rif. verbale di accettazione 04/2006 Certificato n. -

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S1B44 Campione 3 Profondità da m 22.00 a m 22.50

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo

Data di arrivo in laboratorio 16/6/2006

Data di apertura 14/7/2006

Contenitore Fustella di plastica

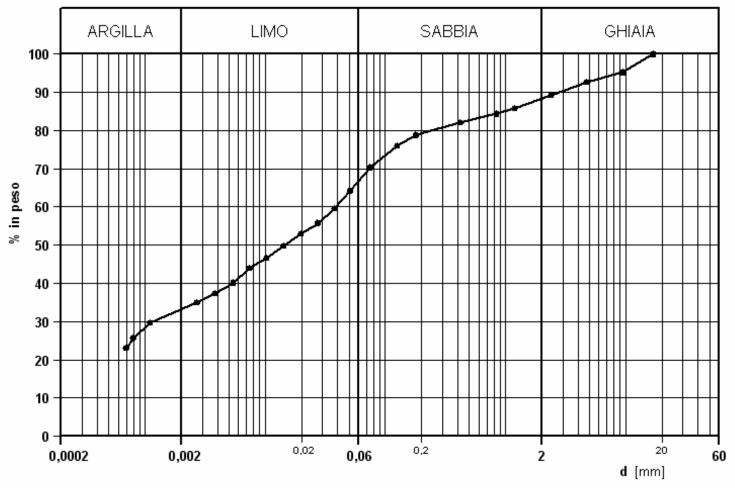
Dimensioni l = 39 cm

Condizioni campione Cattive

Prove eseguite γ_s , G, w

Rp [N/mm²] Descrizione

(Normativa ASTM D2487/00 - ASTM D2488/00)


Argilla alterata di colore grigio giallastro. Il terreno è molto disturbato dalle operazioni di campionamento.

Lo Sperimentatore Salvatore Febo

Verbale di accettazione 04/2006	Certificato n° -
Richiedente SYSTRA S.A.	
Lavoro Metropolitana Automatica Leggera di Palermo - Ore	to-Notarbartolo
Sondaggio S1B44 Campione 3 Profondità da	am 22.00 am 22.50
Data inizio prova 18/7/2006	Data fine prova 25/7/2006

ANALISI GRANULOMETRICA - ASTM D-422 (2002)

Composizione granulometrica Argilla e limo sabbiosi ghiaiosi

$$U = \frac{d_{60}}{d_{10}} = \frac{33}{100}$$

Note _____

Lo Sperimentatore Salvatore Febo

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S1B45 Campione 1 Profondità da m 20.50 a m 21.00

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo

Data di arrivo in laboratorio 19/7/2006

Data di apertura 24/7/2006

Contenitore Fustella metallica

Dimensioni 1 = 36 cm

Condizioni campione Buone

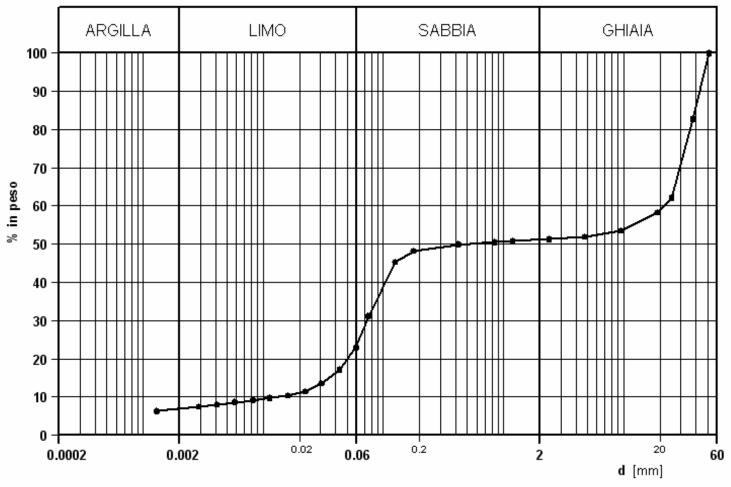
Prove eseguite γ_s , G, w

Rp [N/mm²] Descrizione

(Normativa ASTM D2487/00 – ASTM D2488/00)

Sabbia limosa poco addensata di colore giallastro, con noduli e frammenti

calcarenitici.


Lo Sperimentatore

Salvatore Febo

Il Direttore del Laboratorio

Verbale di accettazio	one 04/2006	6			Cer	tificate	o n°				
Richiedente SYSTI	Richiedente SYSTRA S.A.										
avoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo											
Sondaggio S1E	345 Cam	npione	1	Profondità da m	20.50	a m	21.00				
Data inizio prova	31/7/2006				Data fine prova	ì	4/8/2006				

Composizione granulometrica Ghiaia con sabbia limosa deb. argillosa

$$U = \frac{d_{60}}{d_{10}} = \frac{3}{100}$$
 % < d = 0,002 mm 7

Note

Lo Sperimentatore Salvatore Febo

Il Direttore del Laboratorio

Rif. verbale di accettazione 04/2006 Certificato n. -

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S1B45 Campione 2 Profondità da m 23.50 a m 24.00

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo

Data di arrivo in laboratorio 19/7/2006

Data di apertura 24/7/2006

Contenitore Fustella metallica

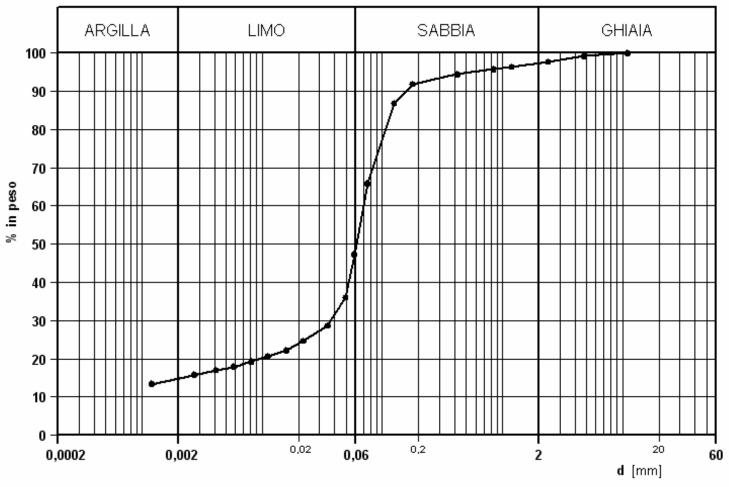
Dimensioni l = 31 cm

Condizioni campione Buone

Prove eseguite γ_s , G, w

Rp [N/mm²] Descrizione

(Normativa ASTM D2487/00 - ASTM D2488/00)


Sabbia limosa di colore grigio marrone, mediamente addensata, fossilifera.

Lo Sperimentatore

Salvatore Febo Ing. Gabriele Speciale

Verbale di accettazione 04/2006	Certificato n° -							
Richiedente SYSTRA S.A.								
_avoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo								
Sondaggio S1B45 Campione 2 Profondità da m	23.50 am 24.00							
Data inizio prova 26/7/2006	Data fine prova 31/7/2006							

Composizione granulometrica Sabbia con limo argillosa

$$U = \frac{d_{60}}{d_{10}} =$$

Note _____

Lo Sperimentatore Salvatore Febo

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S1B46 Campione 1 Profondità da m 34.50 a m 35.00

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo

Data di arrivo in laboratorio 19/7/2006

Data di apertura 24/7/2006

Contenitore Fustella metallica

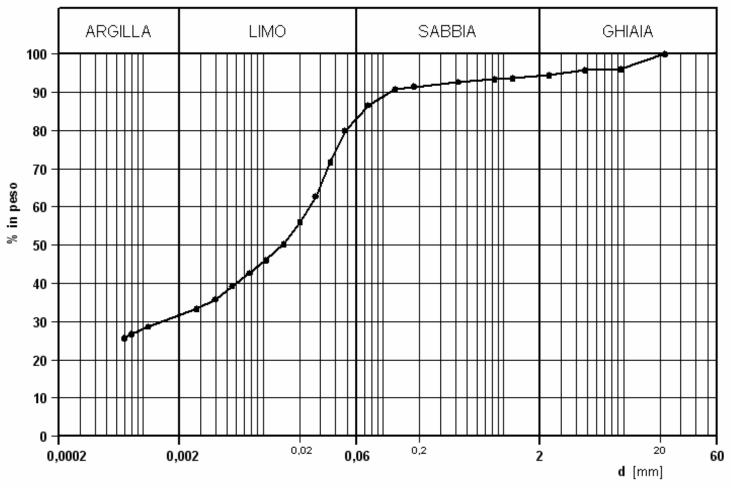
Dimensioni l = 37 cm

Condizioni campione Buone

Prove eseguite γ_s , G, w

Rp [N/mm²] Descrizione

(Normativa ASTM D2487/00 - ASTM D2488/00)


Alternanza di sabbia limosa e limo sabbioso di colore marrone giallastro, con noduli di sabbia ocra e ghiaia calcarenitica. Frammenti di fossili.

Lo Sperimentatore Salvatore Febo Il Direttore del Laboratorio Ing. Gabriele Speciale

Modulo 9.29A - Rev. 1 del 06/06/05

Verbale di acc	ettazione 04	1/2006			Cer	tificato	n°				
Richiedente S	Richiedente SYSTRAS.A.										
Lavoro Metro	Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo										
Sondaggio	S1B46	Campione	1	Profondità da m	34.50	am	35.00				
Data inizio pro	va 27/7/	2006			Data fine prova	a ′	1/8/2006				

Composizione granulometrica Limo con argilla sabbioso deb. ghiaioso

$$U = \frac{d_{60}}{d_{10}} = \frac{31}{100}$$

Note _____

Lo Sperimentatore Salvatore Febo

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S1B46 Campione 2 Profondità da m 43.00 a m 43.50

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo

Data di arrivo in laboratorio 19/7/2006

Data di apertura 19/7/2006

Contenitore Fustella metallica

Dimensioni l = 40 cm

Condizioni campione Discrete

Prove eseguite w

Rp [N/mm²] Descrizione

(Normativa ASTM D2487/00 - ASTM D2488/00)

Sabbia grossa limosa di colore giallo ocra, con frammenti e gusci di conchiglie.

Lo Sperimentatore Salvatore Febo Il Direttore del Laboratorio Ing. Gabriele Speciale

Modulo 9.29A - Rev. 1 del 06/06/05

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

18.50 Sondaggio S1B47 Campione Profondità da m 18.00 a m

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo

Data di arrivo in laboratorio 19/7/2006

24/7/2006 Data di apertura

Contenitore Fustella metallica

Dimensioni 1 = 36 cm

Condizioni campione Discrete

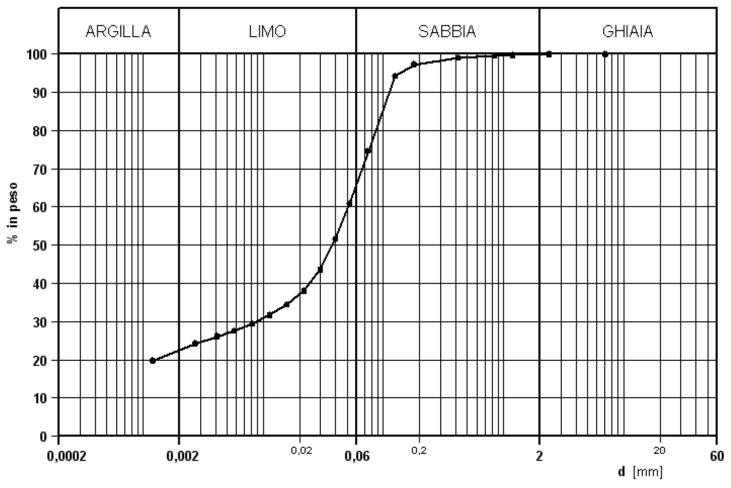
Prove eseguite γ_s , G, w

Descrizione **Rp** [N/mm²]

(Normativa ASTM D2487/00 – ASTM D2488/00)

Sabbia limosa o debolmente limosa di colore giallastro ocra, con frustoli

rossastri e frammenti di fossili, poco addensata.


Lo Sperimentatore

Salvatore Febo

Il Direttore del Laboratorio

Verbale di accettazione (04/2006			Cer	tificato n°				
Richiedente SYSTRAS	S.A.								
Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo									
Sondaggio S1B47	Campione	1	Profondità da m	18.00	a m	18.50			
Data inizio prova 26/	7/2006			Data fine prova	31/7	7/2006			

Composizione granulometrica Limo con sabbia argilloso

$$U = \frac{d_{60}}{d_{10}} = \frac{3}{2}$$
 % < d = 0,002 mm \quad 23

Note _____

Lo Sperimentatore Salvatore Febo

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S1B48 Campione 1 Profondità da m 23.00 a m 23.50

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo

Data di arrivo in laboratorio 2/8/2006

Data di apertura 3/8/2006

Contenitore Fustella metallica

Dimensioni l = 34 cm

Condizioni campione Mediocri

Prove eseguite w

Rp [N/mm²] Descrizione

(Normativa ASTM D2487/00 - ASTM D2488/00)

Sabbia limosa e limo sabbioso di colore variabile dall'avana al giallastro, da poco a mediamente addensata. Presenza di numerosi frustoli rossastri.

Lo Sperimentatore Salvatore Febo

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S1B51 Campione 1 Profondità da m 24.50 a m 25.00

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo

Data di arrivo in laboratorio 2/8/2006

Data di apertura 3/8/2006

Contenitore Fustella metallica

Dimensioni l = 39 cm

Condizioni campione Discrete

Prove eseguite w

Rp [N/mm²] Descrizione

(Normativa ASTM D2487/00 – ASTM D2488/00)

Sabbia limosa e limo sabbioso di colore giallastro, con bande marroni e livelli di sabbia ocra, poco o mediamente addensata, con frammenti di fossili.

Lo Sperimentatore

Salvatore Febo

Il Direttore del Laboratorio

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-52 Campione 1 Profondità da m 4.50 a m 4.70

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo 4/7/2006

Data di arrivo in laboratorio 19/7/2006

Data di apertura 19/7/2006

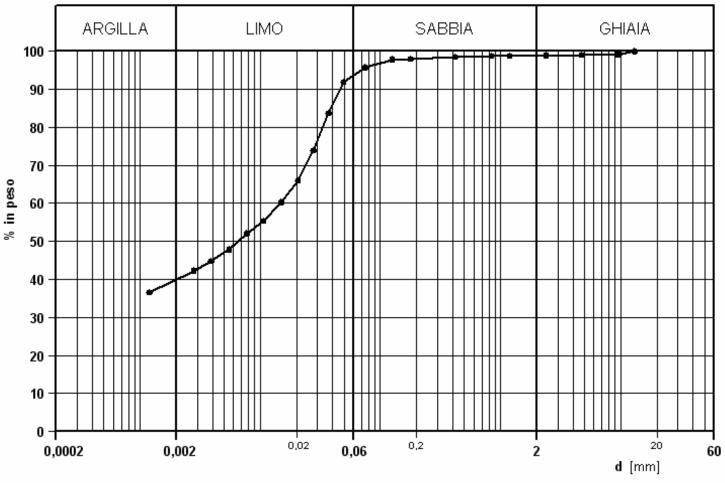
Contenitore Fustella metallica

Dimensioni l = 20 cm

Condizioni campione Discrete

Prove eseguite γ , γ_s , G, w, w_p , w_l , CE, TD (CD)

Rp [N/mm²] Descrizione


(Normativa ASTM D2487/00 - ASTM D2488/00)

Limo argilloso sabbioso di colore marrone giallastro, consistente, $w_n \geq w_p$, con veli di sabbia ocra e patine grigie.

Lo Sperimentatore Salvatore Febo Il Direttore del Laboratorio

Verbale di accettazioni	e 04/2006			Cer	tificato n°	-			
Richiedente SYSTR	AS.A.								
Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo									
Sondaggio S2-52	2 Campione	11	Profondità da m	4.50	a m	4.70			
Data inizio prova 2	24/7/2006			Data fine prova	27/7	7/2006			

Composizione granulometrica Limo con argilla deb. sabbioso

$$U = \frac{d_{60}}{d_{10}} = \frac{d_{60}}{d_{10}} = \frac{40}{100}$$

Note

Lo Sperimentatore Salvatore Febo

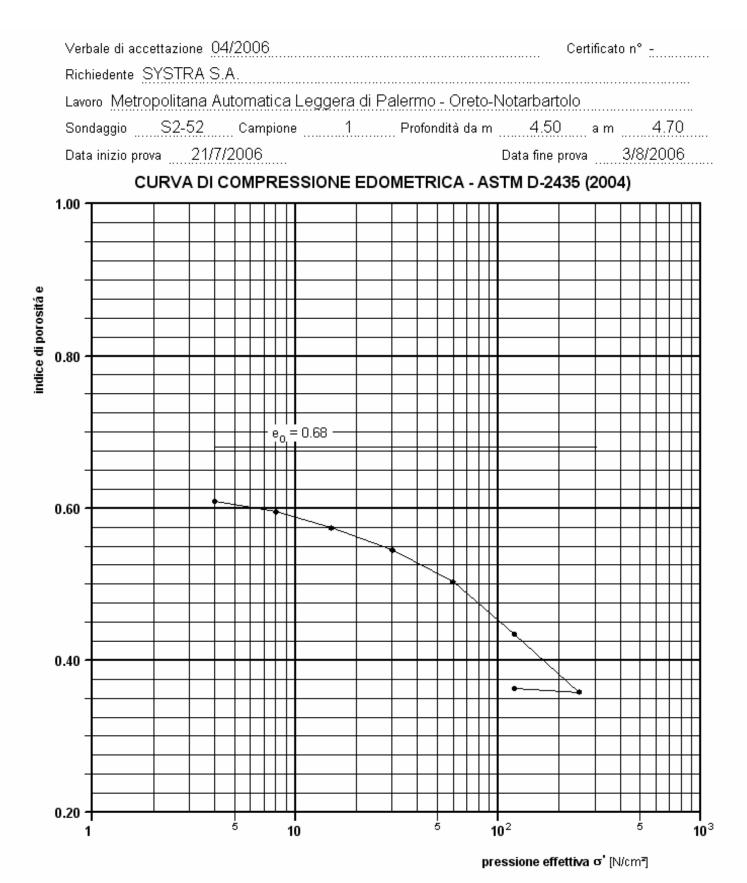
Cap. Soc. € 51.480,00 int. vers. - C.C.I.A.A. di PA 132403 - Trib. PA Soc. 27277 - Partita I.V.A. 03317020828

www.laboratoriometro.it

E-mail: info@laboratoriometro.it

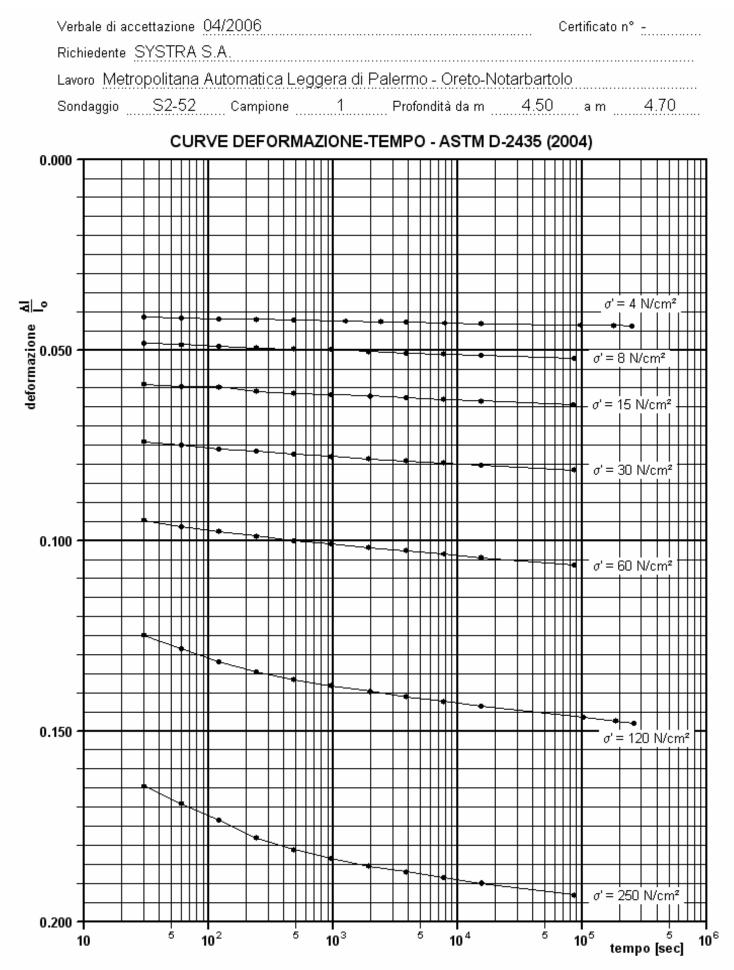
Il Direttore del laboratorio

Ing. Gabriele Speciale


Verbale di accettazione	04/2006) 				Certificato n° -				
Richiedente SYSTRA										
Lavoro Metropolitana	Automa	tica Leg	gera di F	Palermo	- Oreto-l	Votarbar	tolo			
Sondaggio S2-52	Cam	pione	11	Profon	dità da m	4.5	0 am	4.	70	
Data inizio prova21	/7/2006					Data fine	prova	3/8/20	06	
PROVA	DI COM	PRESS	IONE E	DOMET	RICA - A	STM D	-2435 (2	004)		
Dimensioni del pro	ovino:	diar	netro d = s	50 mm	altezza I _o = 20 mm					
		Carat								
Peso c	lell'unitá di	=	19.6	kN/m³						
Peso s	d =	15.9	kN/m³							
Peso s	pecifico			γ	s =	26.7	kN/m³			
Conter	iuto d'acqu	ıa		W	w = 0.24					
Indice	di porositá	l		е	e _o =0.68					
Grado	di saturazi	ione		S	=(0.93				
		Risulta	ati della i	prova						
Peso o	lell'unitá di	volume fi	nale	γ	$\gamma_{\rm f}$ = 15.6 kN/m ³					
Conter	iuto d'acqu	ıa finale		W	$w_f = 0.19$					
Pressione σ' [N/cm²]	4.0	8.0	15.0	30.0	60.0	120.0	250.0			
Indice di porositá	0.609	0.595	0.574	0.545	0.503	0.434	0.358			
e scarico						0.363				
Note										

Mode to 9.42C - Rev. 1 del 22/07/05

Lo Sperimentatore


Salvatore Febo

Lo Sperimentatore Salvatore Febo

Cap. Soc. € 51.480,00 int. vers. - C.C.I.A.A. di PA 132403 - Trib. PA Soc. 27277 - Partita I.V.A. 03317020828

www.laboratoriometro.it

tempo [sec]

Verbale di accettazione 04/2006 Certificato n° -Richiedente SYSTRA S.A. Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-52 Campione 1 Profondità da m 4.50 a m 4.70 CURVE DEFORMAZIONE-TEMPO - ASTM D-2435 (2004) 0.000 deformazione 0.100° 0.150 - σ' = 120 N/cm² 0.200 10² 10³ 10 ⁴ 10⁶

10

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-52 Campione 1 Profondità da m 4.50 a m 4.70

PROVA DI COMPRESSIONE EDOMETRICA GRANDEZZE CARATTERISTICHE

σ ′ [N/cm²]	Eed [N/cm ²]	m _V [cm ² /N]	c _V [cm ² /sec]	k [cm/sec]
4.0 ÷ 8.0	450	2.2×10^{-3}		
8.0 ÷ 15.0	544	1.8×10^{-3}		
15.0 ÷ 30.0	821	1.2×10^{-3}		
30.0 ÷ 60.0	1102	9.1×10^{-4}		
60.0 ÷ 120.0	1293	7.7×10^{-4}	3.9×10^{-3}	3.0×10^{-8}
120.0 ÷ 250.0	2456	4.1×10^{-4}	2.2×10^{-3}	8.9×10^{-9}

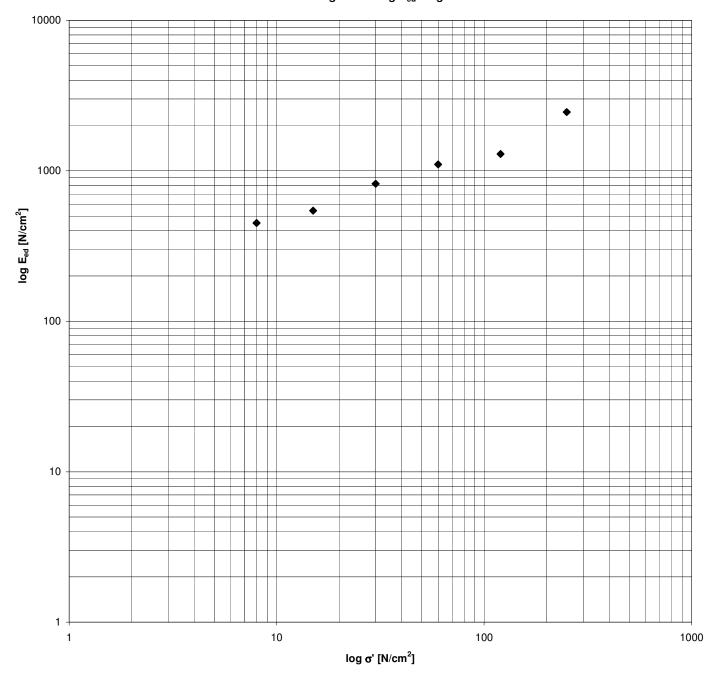
note

Lo Sperimentatore

Il Direttore del Laboratorio

Salvatore Febo

Verbale di accettazione 04/2006


Certificato n. -

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

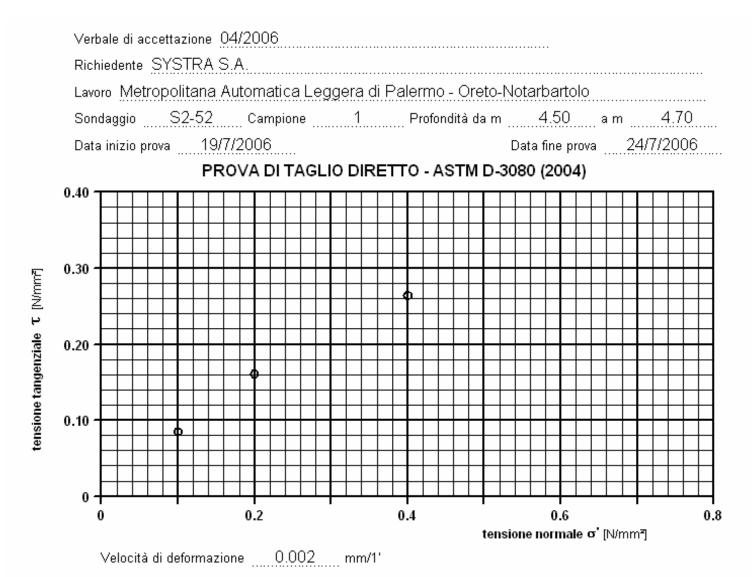
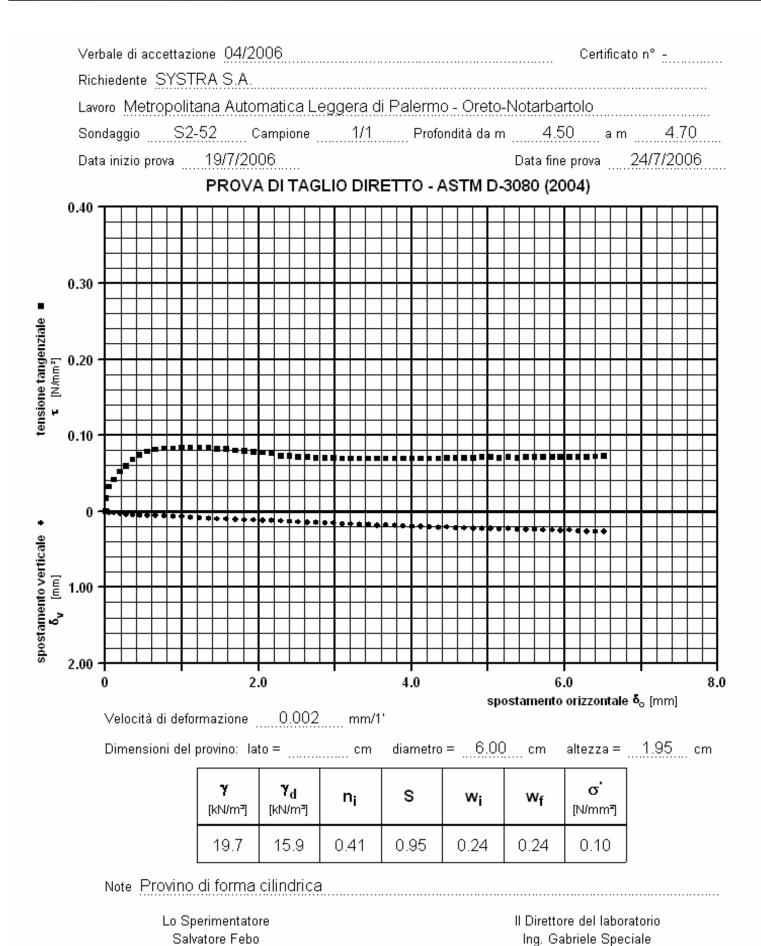
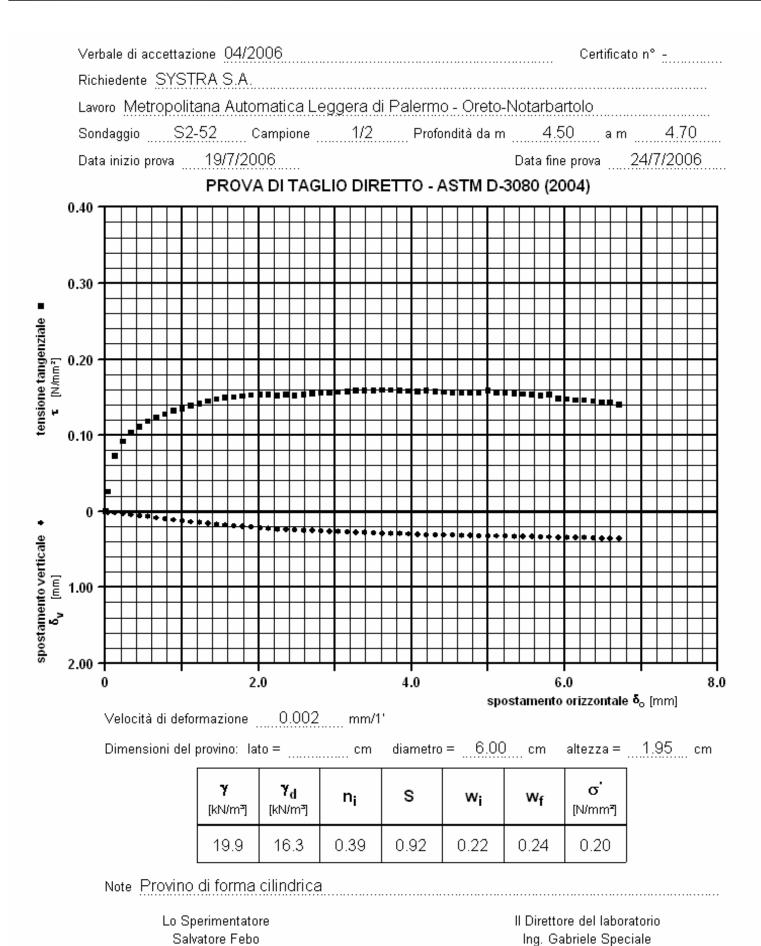

Sondaggio S2-52 Campione 1 Profondità da m 4,50 a m 4,70

diagramma log E_{ed} / log σ'

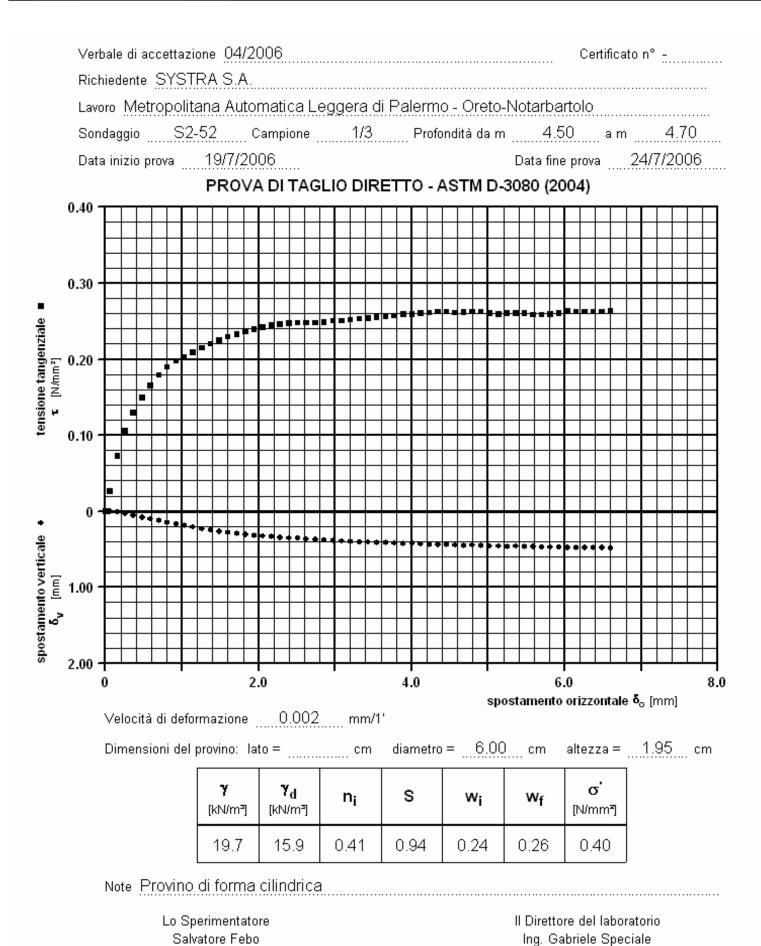
Lo Sperimentatore Salvatore Febo



Provino	y [kN/m³]	Υ _d [kN/m³]	n _i	s	w _i	w _f	ፒ _f [N/mm ²]	σ' [N/mm²]	δ _{of} [mm]
1	19.7	15.9	0.41	0.95	0.24	0.24	0.085	0.10	1.07
2	19.9	16.3	0.39	0.92	0.22	0.24	0.161	0.20	3.65
3	19.7	15.9	0.41	0.94	0.24	0.26	0.264	0.40	4.87


Note Prova consolidata drenata

Lo Sperimentatore Salvatore Febo



www.laboratoriometro.it

E-mail: info@laboratoriometro.it

Certificato n. -

Rif. verbale di accettazione 04/2006

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-52 Campione 1

Profondità da m 4,50 a m 4,70

RISULTATI DELLA PROVA DI TAGLIO DIRETTO - ASTM D-3080 (2004)

Data inizio prova 19/7/2006

Data fine prova 24/7/2006

Provino	1			2			3	
σ' [N/mm²] 0.1			0.2			0.4	
$\delta_{\rm o}$ [mm]	τ [N/mm ²]	δ_v [mm]	δ _o [mm]	τ [N/mm ²]	δ_v [mm]	δ _o [mm]	τ [N/mm ²]	δ_v [mm]
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.008	0.017	0.002	0.025	0.026	0.012	0.053	0.027	-0.002
0.039	0.033	0.010	0.116	0.073	0.017	0.150	0.073	0.005
0.105	0.042	0.020	0.223	0.092	0.027	0.253	0.106	0.027
0.184	0.052	0.027	0.332	0.103	0.042	0.359	0.130	0.047
0.264	0.060	0.037	0.443	0.111	0.055	0.473	0.150	0.076
0.353	0.068	0.045	0.552	0.119	0.067	0.581	0.166	0.098
0.443	0.074	0.047	0.661	0.123	0.082	0.692	0.180	0.115
0.542	0.079	0.050	0.775	0.128	0.097	0.803	0.190	0.140
0.651	0.082	0.050	0.886	0.133	0.112	0.917	0.198	0.162
0.761	0.083	0.054	0.997	0.135	0.122	1.028	0.203	0.184
0.877	0.083	0.062	1.109	0.139	0.135	1.141	0.209	0.204
0.990	0.083	0.067	1.223	0.142	0.144	1.257	0.215	0.226
1.106	0.083	0.074	1.334	0.145	0.157	1.370	0.221	0.243
1.221	0.084	0.084	1.448	0.148	0.167	1.483	0.225	0.260
1.341	0.083	0.089	1.562	0.150	0.177	1.597	0.230	0.275
1.456	0.082	0.094	1.673	0.150	0.187	1.713	0.233	0.290
1.573	0.082	0.097	1.787	0.152	0.197	1.823	0.237	0.302
1.696	0.081	0.102	1.898	0.153	0.204	1.937	0.240	0.312
1.810	0.080	0.107	2.015	0.154	0.217	2.053	0.242	0.321
1.931	0.079	0.111	2.126	0.154	0.224	2.166	0.245	0.331
2.048	0.078	0.114	2.242	0.152	0.232	2.279	0.247	0.339
2.164	0.077	0.119	2.354	0.154	0.237	2.395	0.248	0.346
2.286	0.073	0.126	2.470	0.152	0.242	2.508	0.248	0.351
2.399	0.073	0.129	2.584	0.154	0.247	2.622	0.248	0.361
2.516	0.072	0.134	2.698	0.155	0.252	2.738	0.249	0.368
2.631	0.071	0.141	2.812	0.156	0.257	2.853	0.249	0.373
2.748	0.071	0.146	2.925	0.157	0.262	2.969	0.251	0.380
2.863	0.070	0.151	3.039	0.157	0.264	3.083	0.251	0.388
2.976	0.070	0.151	3.153	0.158	0.269	3.198	0.253	0.393
3.090	0.070	0.161	3.267	0.159	0.272	3.312	0.254	0.398
3.204	0.070	0.163	3.381	0.159	0.277	3.425	0.254	0.402
3.317	0.070	0.168	3.497	0.159	0.281	3.541	0.255	0.407
3.431	0.070	0.171	3.611	0.160	0.285	3.657	0.256	0.410
3.547	0.070	0.181	3.725	0.160	0.289	3.772	0.258	0.417
3.658	0.070	0.176	3.841	0.159	0.291	3.886	0.260	0.420
3.775	0.070	0.186	3.958	0.158	0.296	3.999	0.260	0.417
3.886	0.070	0.191	4.074	0.158	0.299	4.112	0.261	0.427
3.999	0.070	0.193	4.190	0.159	0.306	4.226	0.262	0.432

Lo Sperimentatore

Salvatore Febo

Il Direttore del Laboratorio

www.laboratoriometro.it

E-mail: info@laboratoriometro.it

Rif. verbale di accettazione 04/2006

Certificato n. -

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-52 Campione 1 Profondità da m 4,50 a m 4,70

RISULTATI DELLA PROVA DI TAGLIO DIRETTO - ASTM D-3080 (2004)

Data inizio prova 19/7/2006

Data fine prova 24/7/2006

Provino	1			2		<u>'</u>	3	
				0.2			0.4	
σ' [N/mm²]] 0.1			0.2			0.4	
δ _o [mm]	$_{\tau}\;[\text{N/m}\text{m}^{2}]$	δ_v [mm]	δ_{o} [mm]	$\tau \; [N/mm^2]$	$\delta_v \; [mm]$	δ _o [mm]	$\tau \; [N/mm^2]$	$\delta_v \; [mm]$
4.113	0.070	0.198	4.304	0.157	0.309	4.337	0.263	0.432
4.229	0.070	0.201	4.420	0.157	0.309	4.453	0.263	0.437
4.343	0.070	0.206	4.534	0.157	0.311	4.566	0.262	0.439
4.457	0.070	0.203	4.651	0.156	0.316	4.677	0.262	0.444
4.573	0.070	0.213	4.764	0.156	0.316	4.788	0.263	0.439
4.686	0.070	0.213	4.878	0.157	0.319	4.904	0.263	0.449
4.799	0.071	0.220	4.995	0.159	0.319	5.017	0.261	0.452
4.912	0.071	0.223	5.108	0.156	0.321	5.133	0.260	0.452
5.028	0.071	0.223	5.222	0.156	0.321	5.246	0.261	0.459
5.142	0.071	0.228	5.339	0.155	0.326	5.359	0.261	0.456
5.257	0.071	0.223	5.452	0.154	0.329	5.473	0.261	0.461
5.375	0.071	0.233	5.569	0.154	0.331	5.584	0.259	0.459
5.487	0.071	0.235	5.685	0.152	0.334	5.695	0.259	0.466
5.603	0.071	0.238	5.796	0.154	0.336	5.806	0.260	0.466
5.716	0.072	0.245	5.913	0.148	0.341	5.919	0.261	0.469
5.831	0.071	0.243	6.024	0.148	0.341	6.035	0.264	0.471
5.943	0.072	0.248	6.138	0.147	0.344	6.146	0.263	0.474
6.059	0.072	0.243	6.254	0.147	0.344	6.259	0.263	0.476
6.171	0.072	0.253	6.368	0.145	0.349	6.370	0.263	0.471
6.285	0.071	0.265	6.482	0.144	0.354	6.483	0.263	0.476
6.398	0.072	0.265	6.591	0.143	0.354	6.597	0.264	0.481
6.508	0.073	0.265	6.705	0.140	0.356			

Lo Sperimentatore

Salvatore Febo

www.laboratoriometro.it

Rif. verbale di accettazione 04/2006 Certificato n. -

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-52 Campione 2 Profondità da m 18.50 a m 19.00

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo 5/7/2006

Data di arrivo in laboratorio 19/7/2006

Data di apertura 24/7/2006

Contenitore Fustella metallica

Dimensioni 1 = 34 cm

Condizioni campione Buone

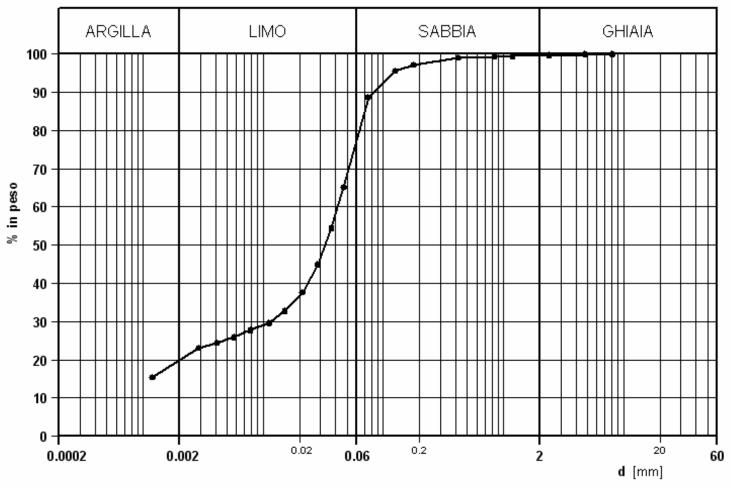
Prove eseguite γ_s , G, w

Rp [N/mm²] Descrizione

(Normativa ASTM D2487/00 - ASTM D2488/00)

Limo sabbioso di colore grigio verdastro, poco consistente, $w_n > w_p$,

fossilifero, con veli di sabbia fina grigia.


Lo Sperimentatore

Salvatore Febo

Il Direttore del Laboratorio

Verbale di accettazio	one <u>04/</u>	2006			Се	ertificat	o n°	-	
Richiedente SYSTI	RAS.A	١							
Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo									
Sondaggio S2-	52	Campione .	2	Profondità da m	18.50	a m		19.00	
Data inizio prova	31/7/2	2006			Data fine prov	'a	3/8/	2006	

Composizione granulometrica Limo sabbioso argilloso

$$U = \frac{d_{60}}{d_{10}} = \frac{d_{60}}{d_{10}} = \frac{20}{1000}$$

Note _____

Lo Sperimentatore Salvatore Febo

Il Direttore del Laboratorio

Rif. verbale di accettazione 04/2006 Certificato n. -

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-52 Campione 3 Profondità da m 22.20 a m 22.50

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo 5/7/2006

Data di arrivo in laboratorio 19/7/2006

Data di apertura 24/7/2006

Contenitore Fustella metallica

Dimensioni 1 = 33 cm

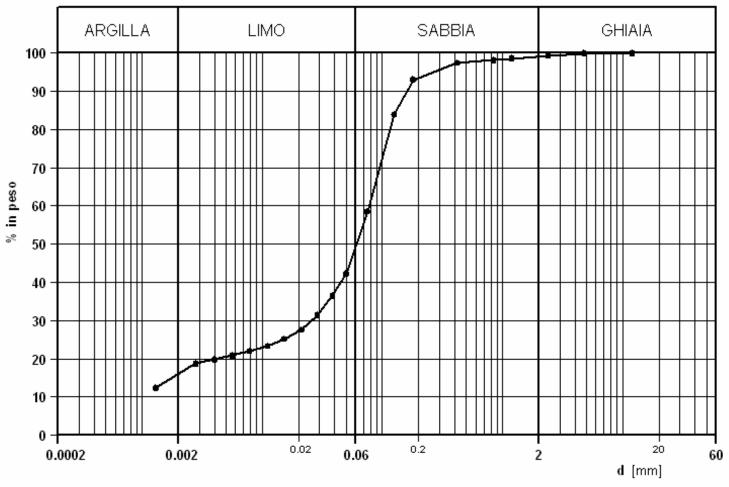
Condizioni campione Mediocri

Prove eseguite γ_s , G, w

Rp [N/mm²] Descrizione

(Normativa ASTM D2487/00 – ASTM D2488/00)

Sabbia limosa di colore grigio, poco addensata, fossilifera.


Lo Sperimentatore

Salvatore Febo Ing. Gabriele Speciale

Modulo 9.29A - Rev. 1 del 06/06/05

Verbale di accettazione 🧕	4/2006			Cer	tificato n	°			
Richiedente SYSTRAS	.A.								
Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo									
Sondaggio S2-52	Campione .	3	Profondità da m	22.20	a m	22.50			
Data inizio prova 28/7	/2006			Data fine prova	2/	8/2006			

Composizione granulometrica Sabbia con limo argillosa

$$U = \frac{d_{60}}{d_{10}} =$$

Note _____

Lo Sperimentatore Salvatore Febo

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-55 Campione 1 Profondità da m 7.50 a m 8.00

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo 7/6/2006

Data di arrivo in laboratorio 12/6/2006

Data di apertura 16/6/2006

Contenitore Fustella metallica

Dimensioni l = 34 cm

Condizioni campione Discrete

Prove eseguite γ , γ_s , G, w, w_p , w_l , CE, CS, TD (CD)

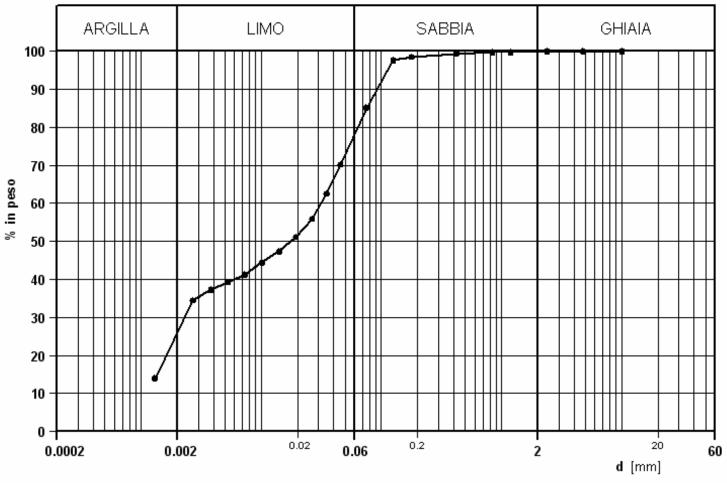
Rp [N/mm²]

Descrizione

(Normativa ASTM D2487/00 - ASTM D2488/00)

0.11-0.07-0.05-0.06-

Limo argilloso sabbioso di colore giallo avana, poco consistente, $w_n > w_p$, con frustoli carboniosi rossastri, frammenti di calcarenite a spigoli arrotondati, del $d_{max} \cong 2$ cm e frammenti di fossili.


Lo Sperimentatore

Il Direttore del Laboratorio Ing. Gabriele Speciale

Salvatore Febo

Verbale di accettazione 04/2006	Certificato n°	· _				
Richiedente SYSTRA S.A.						
Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo						
Sondaggio S2-55 Campione 1 Profondità da m	7.50 am	8.00				
Data inizio prova 19/6/2006	Data fine prova 26/	6/2006				

Composizione granulometrica Limo con argilla sabbioso

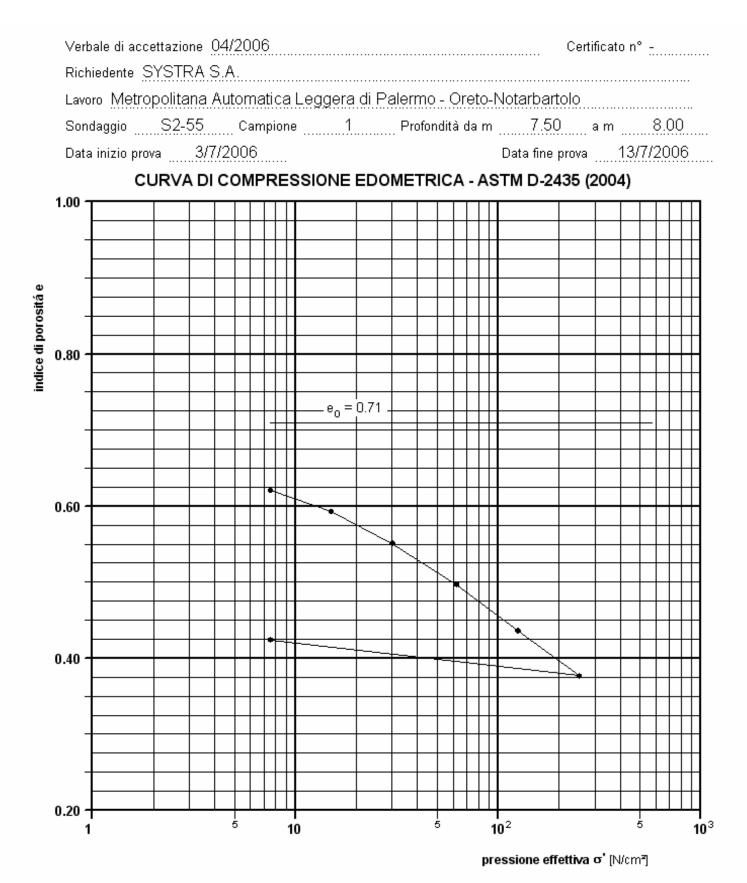
$$U = \frac{d_{60}}{d_{10}} = \frac{d_{60}}{d_{10}} = \frac{26}{d_{10}}$$

Note

Lo Sperimentatore Salvatore Febo

Il Direttore del laboratorio

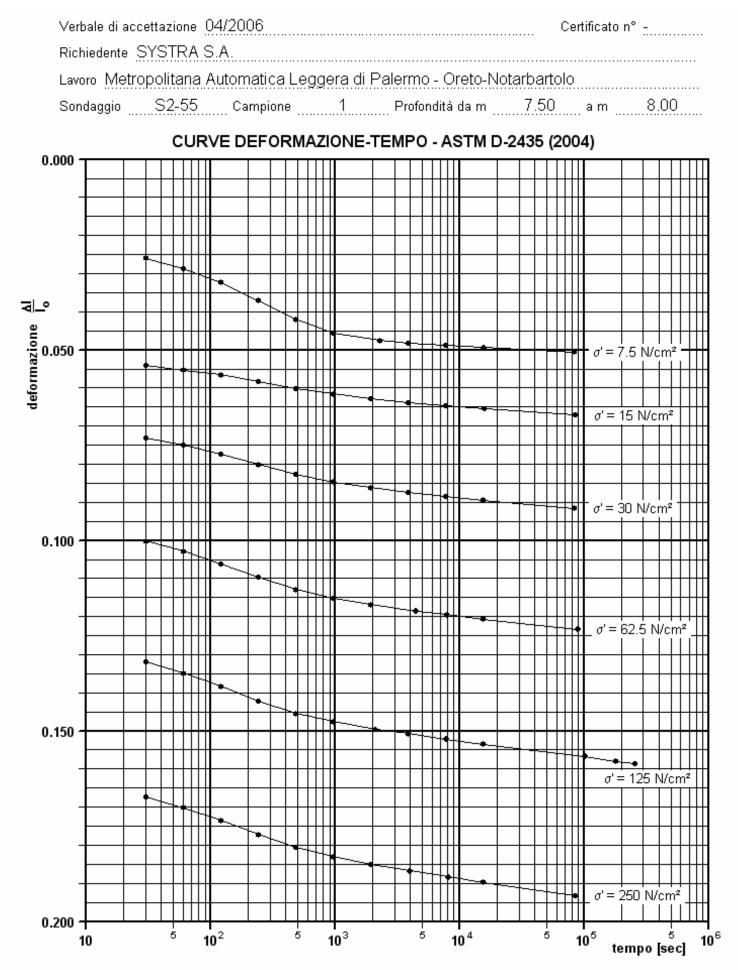
Ing. Gabriele Speciale


Verbale di accettazione 04/2006							Certifica	ato n°		
Richiedente	SYSTRA	S.A								
Lavoro Metr	opolitana	Automa	tica Leg	gera di F	Palermo	- Oreto-l	Votarbari	tolo		
Sondaggio	S2-55	Cam	pione	1	Profon	dità da m	7.50)am	n8.0	00
Data inizio pr	ova3/	7/2006					Data fine	prova	13/7/20	06
PROVA DI COMPRESSIONE EDOMETRICA - ASTM D-2435 (2004)										
Dimensioni del provino:			diar	diametro d = 50 mm			altezza I _o = 20 mm			
			Carat	teristiche	e iniziali					
Peso dell'unitá di volume					$\gamma = 19.8 \text{ kN/m}^3$					
Peso secco dell'unitá di v			unitá di vo	lume	γ	$\gamma_{\rm d}$ = 15.6 kN/m ³				
Peso specifico			γ	's = 27.0 kN/m³						
Contenuto d'acqua			W	W = 0.27						
Indice di porositá			е	e _o = 0.71						
Grado di saturazione			S	S = 1.00						
Risultati della prova										
Peso dell'unitá di volume finale $\gamma_{ m f} = 22.3 { m kN/m^3}$										
Contenuto d'acqua finale			W	$W_f = 0.19$						
Press σ' [N/c		7.5	15.0	30.0	62.5	125.0	250.0			
Indice di porositá e	carico	0.621	0.593	0.551	0.497	0.436	0.377			
	scarico	0.424								
Note										

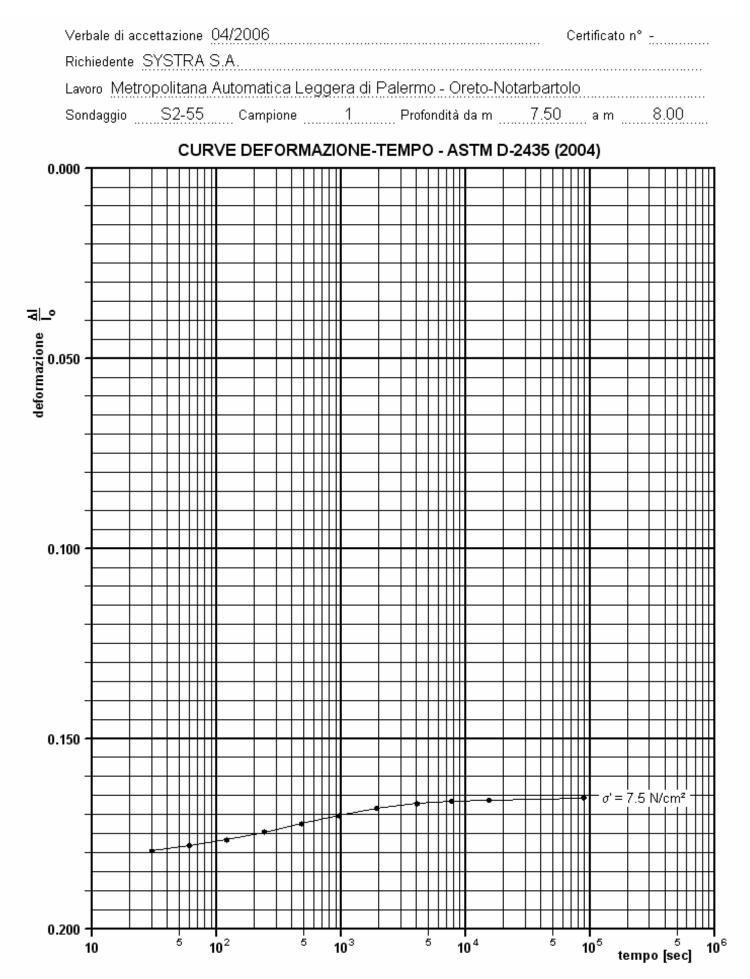
Mode to 9.42C - Rev. 1 del 22/07/05

Lo Sperimentatore

Salvatore Febo



Lo Sperimentatore Salvatore Febo


E-mail: info@laboratoriometro.it

E-mail: info@laboratoriometro.it

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-55 Campione 1 Profondità da m 7.50 a m 8.00

E-mail: info@laboratoriometro.it

PROVA DI COMPRESSIONE EDOMETRICA GRANDEZZE CARATTERISTICHE

σ ′ [N/cm²]	Eed [N/cm ²]	m _V [cm ² /N]	c _V [cm ² /sec]	k [cm/sec]
7.5 ÷ 15.0	432	2.3×10^{-3}	9.0×10^{-4}	2.1×10^{-8}
15.0 ÷ 30.0	571	1.8×10^{-3}	1.2×10^{-3}	2.0×10^{-8}
30.0 ÷ 62.5	930	1.1×10^{-3}	1.2×10^{-3}	1.3×10^{-8}
62.5 ÷ 125.0	1554	6.4×10^{-4}	1.8×10^{-3}	1.2×10^{-8}
125.0 ÷ 250.0	3035	3.3×10^{-4}	2.0×10^{-3}	6.5×10^{-9}

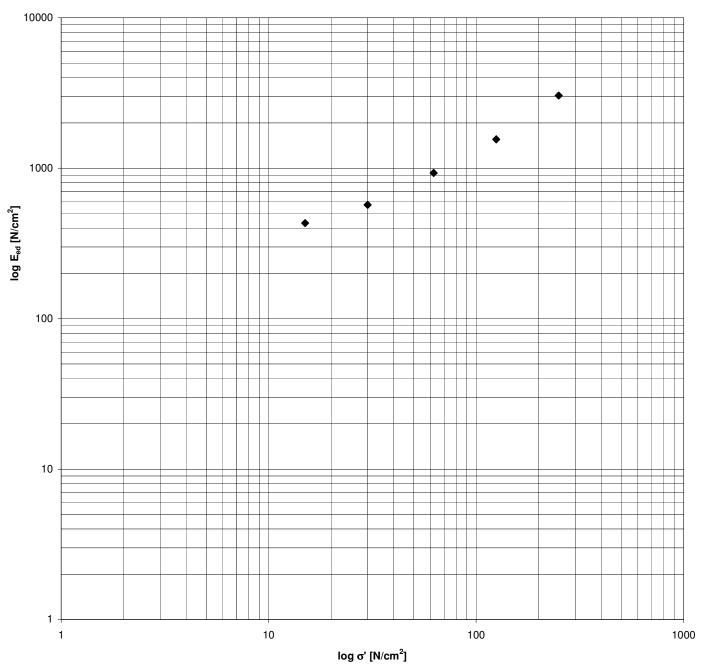
note

Lo Sperimentatore

Il Direttore del Laboratorio

Salvatore Febo

Verbale di accettazione 04/2006


Certificato n. -

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-55 Campione 1 Profondità da m 7,50 a m 8,00

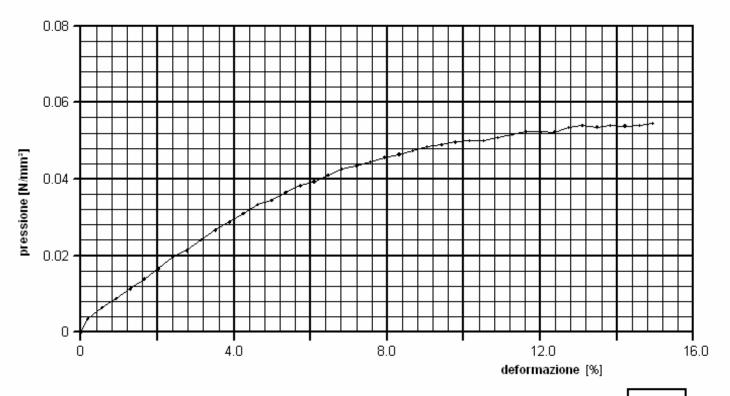
diagramma log E_{ed} / log σ'

Lo Sperimentatore Salvatore Febo

www.laboratoriometro.it

E-mail: info@laboratoriometro.it

Verbale di acc	ettazione <u>04</u>	/2006			Ce	rtificato	n°
Richiedente S	SYSTRA S.A	٩.					
Lavoro Metropolitana automatica leggera di Palermo - Oreto-Notarbartolo							
Sondaggio	S2-55	Campione	1	Profondità da m	7.50	am	8.00
Data inizio pro	iva 6/7/2	:006			Data fine prova	a 7	77/2006


PROVA A COMPRESSIONE SU PROVINI CILINDRICI - ISRM (1978) CURVA PRESSIONE - DEFORMAZIONE

$$d = 78 \text{ mm}$$

$$w = 0.27$$

$$\gamma$$
 = 19.8 kN/m³

$$S_0 = 4778 \text{ mm}^2$$

Schema di rottura

Note

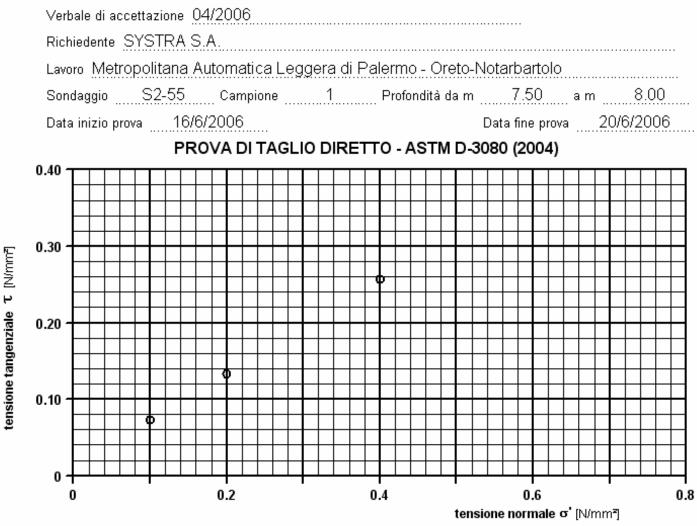
Lo Sperimentatore Salvatore Febo

Certificato n. -

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-55 Campione 1 Profondità da m 7.50 a m 8.00


RISULTATI DELLA PROVA DI COMPRESSIONE SEMPLICE - ASTM D-2166 (2001)

0/7/0000

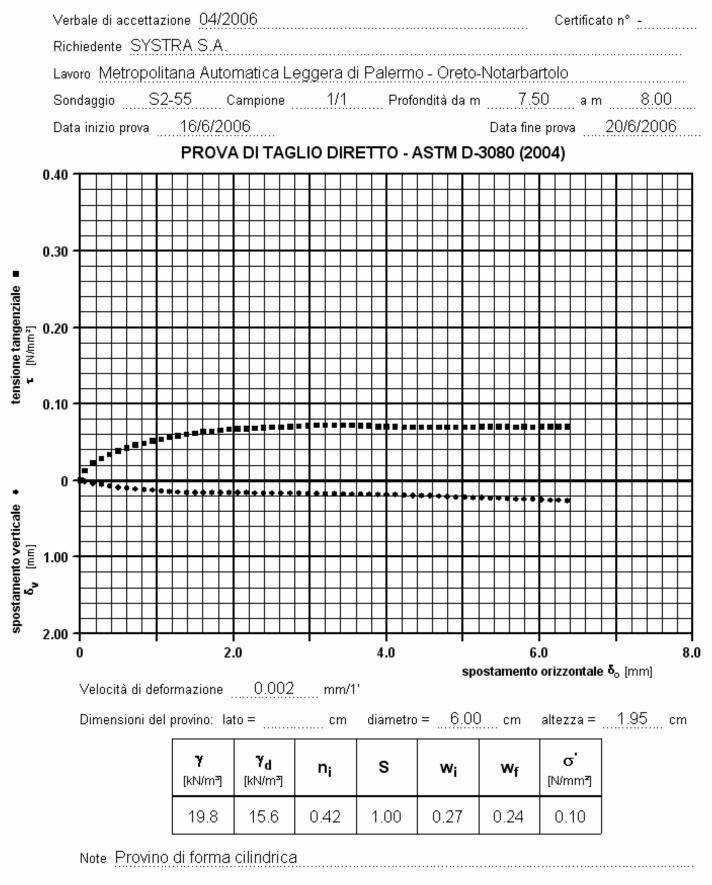
ε [%] σ [N/mm²] 0.000 0.000 0.180 0.003 0.541 0.006 0.916 0.009	ε [%]	σ [N/mm²]
0.180		
0.541 0.006		
0.916 0.009		
1.291 0.011		
1.652 0.014		
2.027 0.017		
2.402 0.020		
2.763 0.021		
3.138 0.024		
3.500 0.027		
3.875 0.029		
4.236 0.031		
4.611 0.033		
4.972 0.034		
5.347 0.037		
5.722 0.038		
6.083 0.039		
6.458 0.041		
6.819 0.043		
7.194 0.044		
7.555 0.045		
7.930 0.046		
8.305 0.046		
8.666 0.047		
9.041 0.049		
9.416 0.049		
9.777 0.050		
10.152 0.050		
10.513 0.050		
10.888 0.051		
11.263 0.052		
11.625 0.053		
12.000 0.052		
12.361 0.052		
12.736 0.054		
13.097 0.054		
13.472 0.054		
13.833 0.054		
14.208 0.054		
14.583 0.054		
14.944 0.054		

Lo Sperimentatore Salvatore Febo

Velocità di deformazione	0.002	mm/11
	~ · · · · ·	

Provino	y [kN/m³]	Υ _d [kN/m³]	n _i	ø	w _i	w _f	^ፒ f [N/mm²]	σ' [N/mm²]	δ _{of} [mm]
1	19.8	15.6	0.42	1.00	0.27	0.24	0.073	0.10	3.16
2	19.8	15.6	0.42	1.00	0.27	0.23	0.133	0.20	4.15
3	19.9	15.7	0.42	1.00	0.27	0.21	0.257	0.40	3.41

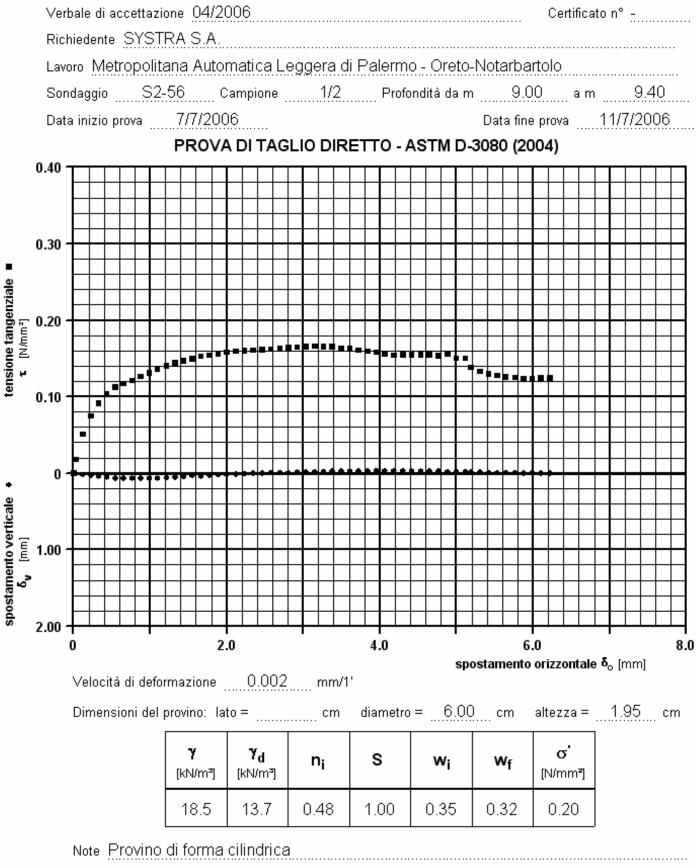
Note Prova consolidata drenata


Lo Sperimentatore Salvatore Febo

Cap. Soc. € 51.480,00 int. vers. - C.C.I.A.A. di PA 132403 - Trib. PA Soc. 27277 - Partita I.V.A. 03317020828

www.laboratoriometro.it

E-mail: info@laboratoriometro.it

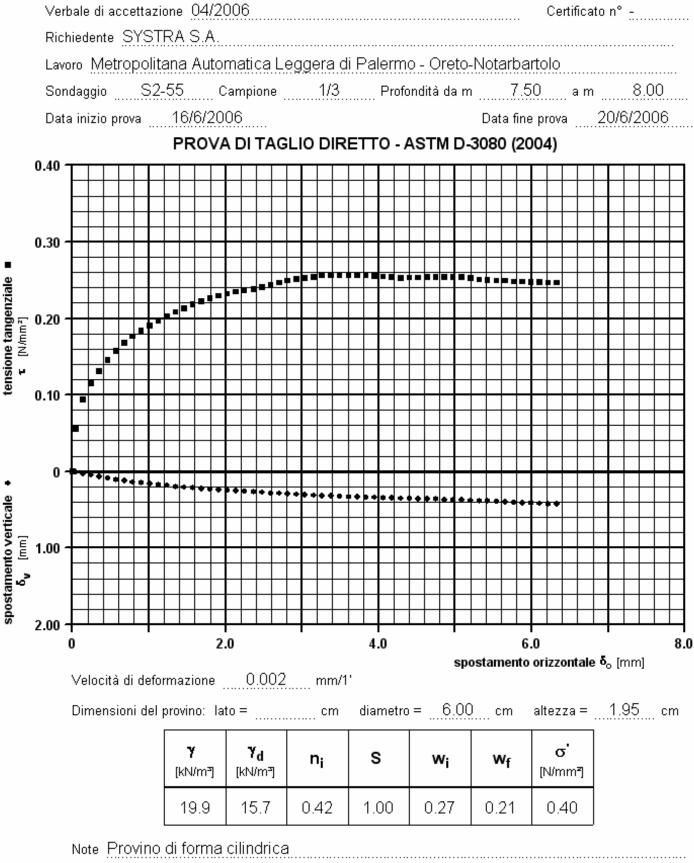


Lo Sperimentatore Salvatore Febo

www.laboratoriometro.it

E-mail: info@laboratoriometro.it

Lo Sperimentatore


Salvatore Febo

Cap. Soc. € 51.480,00 int. vers. - C.C.I.A.A. di PA 132403 - Trib. PA Soc. 27277 - Partita I.V.A. 03317020828

www.laboratoriometro.it

E-mail: info@laboratoriometro.it

.....

Lo Sperimentatore Salvatore Febo

Certificato n. -

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-55 Campione 1 Profondità da m 7,50 a m 8,00

RISULTATI DELLA PROVA DI TAGLIO DIRETTO - ASTM D-3080 (2004)

Data inizio prova 16/6/2006

Data fine prova 20/6/2006

	Data iiiizio piova 10/0/2000 Data iiile piova 20/0/2000									
Provino	1			2			3			
σ' [N/mm ²]	0.1			0.2			0.4			
[m m] 2	[N]/res res 21	[[mm] 2	[N]/ 21	[mm] 2	[mm] 2	[N]/ 21	[mm] 2		
	τ [N/mm ²]		δ_{o} [mm]	τ [N/mm ²]		δ_{o} [mm]	τ [N/mm ²]			
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
0.056	0.013	0.012	0.059	0.021	0.000	0.039	0.056	0.005		
0.161	0.023	0.034	0.165	0.044	0.017	0.135	0.094	0.024		
0.269	0.029	0.053	0.274	0.056	0.037	0.239	0.115	0.045		
0.379	0.034	0.073	0.382	0.065	0.057	0.346	0.132	0.064		
0.489	0.039	0.087	0.495	0.072	0.072	0.454	0.146	0.084		
0.602	0.042	0.095	0.606	0.078	0.086	0.561	0.158	0.100		
0.714	0.046	0.109	0.717	0.083	0.101	0.672	0.168	0.115		
0.826	0.049	0.119	0.833	0.088	0.114	0.783	0.177	0.134		
0.937	0.052	0.126	0.944	0.093	0.121	0.892	0.184	0.146		
1.049	0.054	0.136	1.055	0.097	0.136	1.003	0.191	0.155		
1.159	0.057	0.146	1.168	0.100	0.143	1.117	0.197	0.169		
1.269	0.059	0.148	1.282	0.104	0.148	1.228	0.203	0.179		
1.382	0.060	0.153	1.395	0.106	0.156	1.341	0.209	0.193		
1.492	0.062	0.153	1.508	0.109	0.163	1.452	0.214	0.203		
1.602	0.064	0.155	1.624	0.111	0.168	1.566	0.218	0.212		
1.714	0.065	0.158	1.738	0.114	0.175	1.677	0.222	0.222		
1.827	0.066	0.158	1.851	0.115	0.178	1.793	0.227	0.229		
1.939	0.067	0.158	1.967	0.117	0.185	1.907	0.230	0.239		
2.049	0.068	0.158	2.083	0.119	0.190	2.018	0.232	0.243		
2.164	0.068	0.158	2.199	0.121	0.198	2.132	0.235	0.246		
2.277	0.069	0.163	2.314	0.122	0.200	2.245	0.237	0.255		
2.389	0.069	0.163	2.430	0.123	0.205	2.361	0.239	0.263		
2.504	0.070	0.163	2.546	0.124	0.205	2.472	0.241	0.270		
2.619	0.070	0.165	2.662	0.125	0.212	2.586	0.244	0.279		
2.736	0.071	0.165	2.775	0.125	0.212	2.699	0.247	0.284		
2.854	0.071	0.165	2.894	0.125	0.212	2.808	0.250	0.289		
2.969	0.071	0.172	3.009	0.126	0.217	2.922	0.252	0.294		
3.083	0.072	0.172	3.125	0.126	0.225	3.033	0.253	0.301		
3.198	0.073	0.172	3.241	0.127	0.227	3.147	0.255	0.306		
3.316	0.073	0.172	3.357	0.128	0.230	3.258	0.256	0.313		
3.431	0.072	0.175	3.470	0.129	0.235	3.374	0.256	0.317		
3.543	0.072	0.175	3.584	0.130	0.237	3.487	0.257	0.322		
3.658	0.072	0.175	3.700	0.131	0.242	3.603	0.256	0.325		
3.771	0.071	0.177	3.813	0.132	0.247	3.717	0.256	0.327		
3.886	0.071	0.180	3.926	0.132	0.250	3.830	0.256	0.332		
3.998	0.071	0.185	4.040	0.132	0.252	3.944	0.256	0.337		
4.110	0.070	0.185	4.153	0.133	0.254	4.055	0.255	0.339		
4.225	0.070	0.192	4.266	0.132	0.254	4.169	0.255	0.341		

Lo Sperimentatore

Il Direttore del Laboratorio

Salvatore Febo

Certificato n. -

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-55 Campione 1 Profondità da m 7,50 a m 8,00

RISULTATI DELLA PROVA DI TAGLIO DIRETTO - ASTM D-3080 (2004)

Data inizio prova 16/6/2006

Data fine prova 20/6/2006

Data iiiizib piova 10/0/2000									
Provino 1	2	3							
σ' [N/mm²] 0.1	0.2	0.4							
2-	2-	2-							
$\delta_{\rm o}$ [mm] τ [N/mm ²] $\delta_{\rm v}$ [mm]	δ_0 [mm] τ [N/mm ²] δ_v [mm]	$\delta_{\rm o}$ [mm] τ [N/mm ²] $\delta_{\rm v}$ [mm]							
4.338 0.070 0.194	4.380 0.131 0.254	4.285 0.253 0.346							
4.453 0.070 0.199	4.493 0.129 0.259	4.398 0.254 0.351							
4.565 0.070 0.199	4.607 0.129 0.264	4.512 0.254 0.356							
4.680 0.070 0.204	4.720 0.129 0.262	4.628 0.254 0.356							
4.790 0.070 0.206	4.833 0.129 0.267	4.742 0.254 0.358							
4.903 0.070 0.214	4.947 0.129 0.269	4.855 0.254 0.365							
5.018 0.070 0.216	5.058 0.129 0.269	4.969 0.254 0.368							
5.128 0.070 0.219	5.173 0.129 0.272	5.082 0.254 0.370							
5.240 0.071 0.221	5.287 0.129 0.274	5.196 0.253 0.375							
5.353 0.070 0.226	5.398 0.129 0.279	5.309 0.251 0.380							
5.465 0.070 0.228	5.514 0.130 0.279	5.418 0.250 0.384							
5.575 0.071 0.233	5.627 0.130 0.282	5.534 0.250 0.389							
5.688 0.070 0.240	5.740 0.131 0.282	5.648 0.250 0.394							
5.798 0.070 0.240	5.851 0.131 0.287	5.761 0.249 0.403							
5.910 0.070 0.243	5.967 0.131 0.287	5.873 0.249 0.406							
6.023 0.070 0.248	6.083 0.131 0.292	5.986 0.248 0.408							
6.135 0.070 0.253	6.196 0.131 0.294	6.100 0.248 0.413							
6.245 0.071 0.255	6.310 0.131 0.296	6.213 0.247 0.418							
6.355 0.070 0.260	6.423 0.132 0.299	6.324 0.247 0.422							

Lo Sperimentatore

Salvatore Febo

Il Direttore del Laboratorio

Certificato n. -

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-55 Campione 2 Profondità da m 10.50 a m 11.00

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo 7/6/2006

Data di arrivo in laboratorio 12/6/2006

Data di apertura 16/6/2006

Contenitore Fustella metallica

Dimensioni l = 41 cm

Condizioni campione Buone

Prove eseguite γ , γ_s , G, w, w_p , w_l , CE, TD (CD)

Rp [N/mm²]

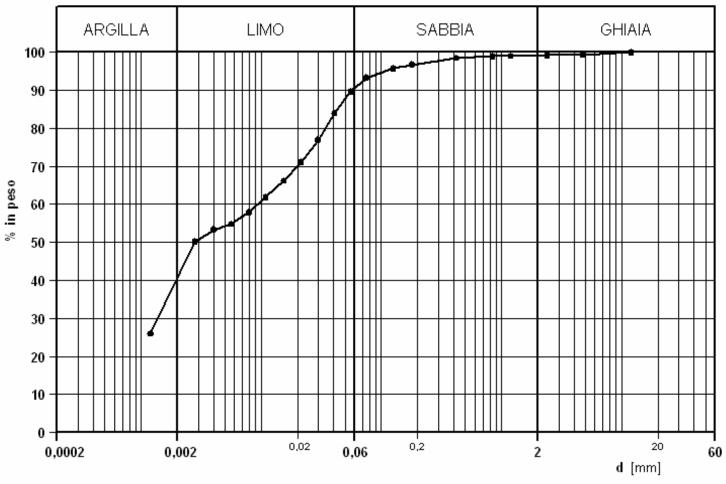
Descrizione

(Normativa ASTM D2487/00 - ASTM D2488/00)

Limo argilloso, a tratti sabbioso, di colore grigio, da poco consistente a molle, 0.10- 0.10- 0.10- 0.10-

Lo Sperimentatore

0.10-


Salvatore Febo

Il Direttore del Laboratorio

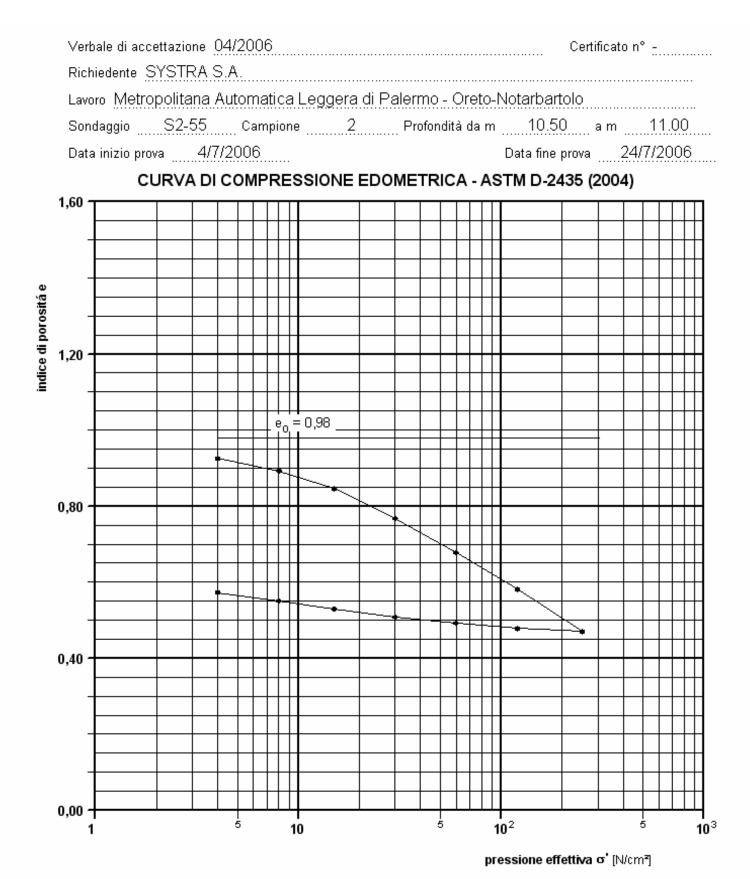
Verbale di accettazi	ione 04	/2006			Ce	rtificato	• •	
Richiedente SYST	RAS.	٩						
Verbale di accettazione 04/2006 Certificato n° - Richiedente SYSTRA S.A. Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo Sondaggio S2-55 Campione 2 Profondità da m 10.50 a m 11.00 Data inizio prova 20/6/2006 Data fine prova 7/7/2006								
Sondaggio S2	-55	Campione	2	Profondità da m	10.50	am	11.00	
Data inizio prova	20/6/:	2006			Data fine prov	a 7	//7/2006	

ANALISI GRANULOMETRICA - ASTM D-422 (2002)

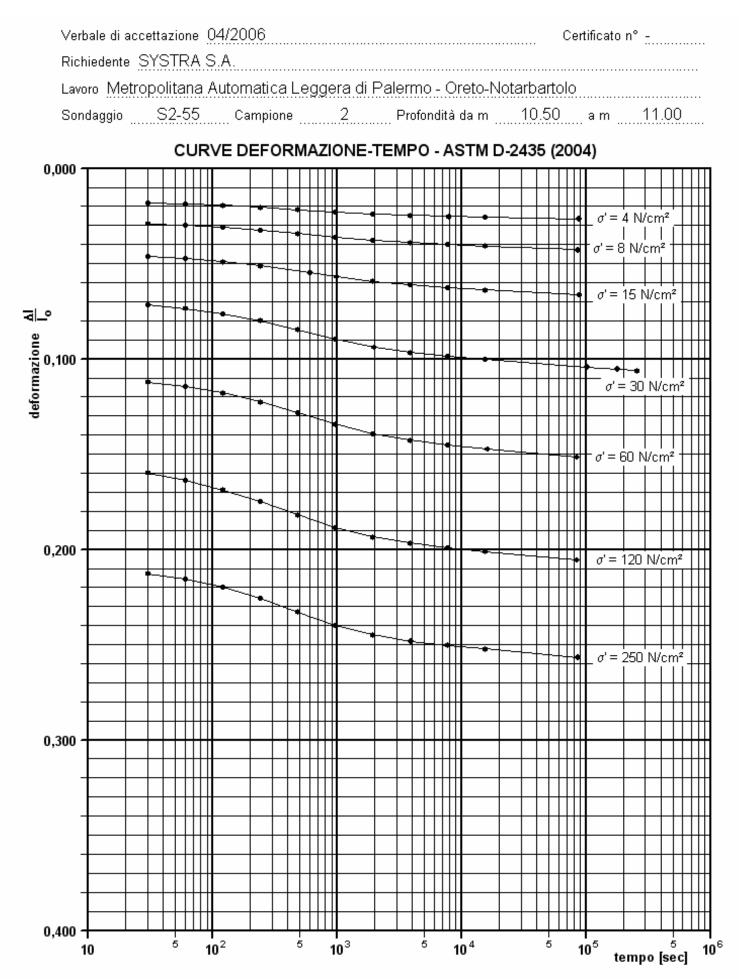
Composizione granulometrica Limo con argilla deb. sabbioso

$$U = \frac{d_{60}}{d_{10}} = \frac{d_{60}}{d_{10}} = \frac{40}{100}$$

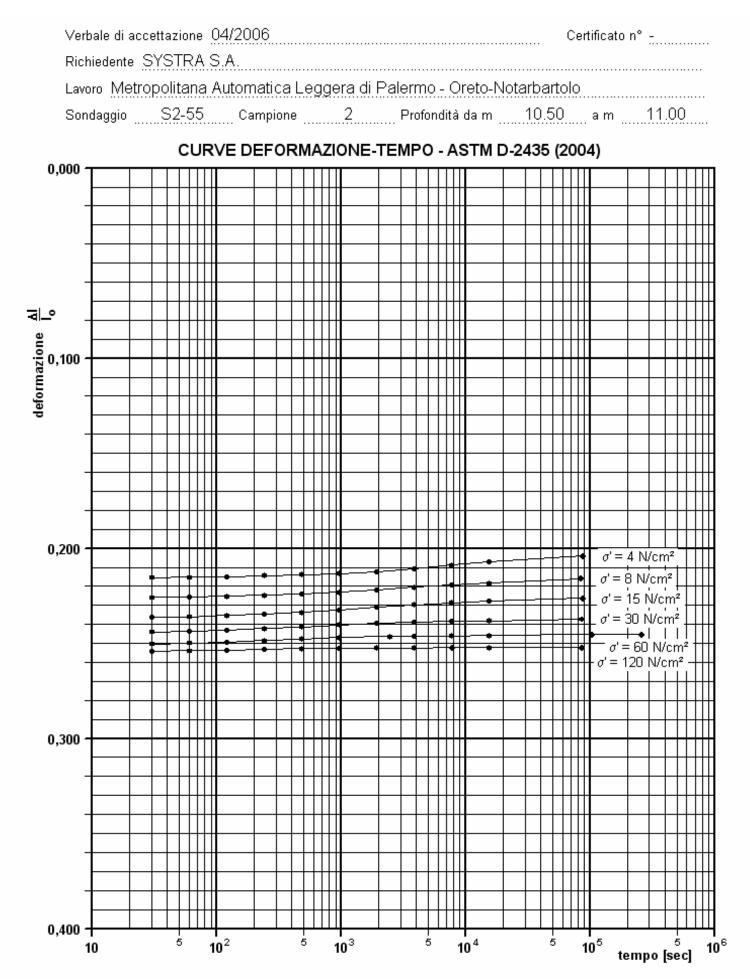
Note


Lo Sperimentatore Salvatore Febo

) 	Certificato n° -							
Richiedente											
Lavoro Metr											
Sondaggio			pione	2	Profon	dità da m					
Data inizio pr	ova4/	//2006					Data fine	prova2	24///20	06	
	PROVA	DICOM	PRESS	IONE E	DOMET	RICA - A	STM D	-2435 (20	04)		
Dimen	sioni del pro	vino:	dian	netro d = 9	50 mm		altezza	l _o = 20 mm			
			Caratt	teristiche	e iniziali						
	Peso d	ell'unitá di	volume		γ	=	18,4	kN/m³			
	Peso s	ecco dell'i	unitá di vo	lume	γ	d =	13,6	kN/m³			
	Peso specifico						26,8	kN/m³			
	Contenuto d'acqua						w = 0,36				
	Indice (di porositá			е	o =!	0,98				
	Grado	di saturazi	ione		S	S = 0,99					
			Risulta	ati della i	prova	va					
	Peso d	ell'unitá di	volume fii	nale	$\gamma_{\rm f} = 13.9$ kN/m ³						
	Conten	uto d'acqu	ıa finale		$w_f = 0.26$						
Press σ' [N/α		4,0	8,0	15,0	30,0	60,0	120,0	250,0			
Indice di porositá	carico	0,925	0,893	0,846	0,767	0,678	0,581	0,470			
e	scarico	0,573	0,550	0,529	0,508	0,492	0,478				
Note											


Lo Sperimentatore Salvatore Febo

Lo Sperimentatore Salvatore Febo



www.laboratoriometro.it

E-mail: info@laboratoriometro.it

Rif. verbale di accettazione: 04/2006 Certificato n. -

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-55 Campione 2 Profondità da m 10.50 a m 11.00

PROVA DI COMPRESSIONE EDOMETRICA GRANDEZZE CARATTERISTICHE

σ ′ [N/cm²]	Eed [N/cm ²]	m _V [cm ² /N]	c _V [cm ² /sec]	k [cm/sec]
4.0 ÷ 8.0	240	4.2×10^{-3}		
8.0 ÷ 15.0	284	3.5×10^{-3}		
15.0 ÷ 30.0	351	2.8×10^{-3}	9.0×10^{-4}	2.6×10^{-8}
30.0 ÷ 60.0	593	1.7×10^{-3}	6.2×10^{-4}	1.0×10^{-8}
60.0 ÷ 120.0	943	1.1×10^{-3}	7.9×10^{-4}	8.4×10^{-9}
120.0 ÷ 250.0	2018	5.0×10^{-4}	5.1×10^{-4}	2.5×10^{-9}

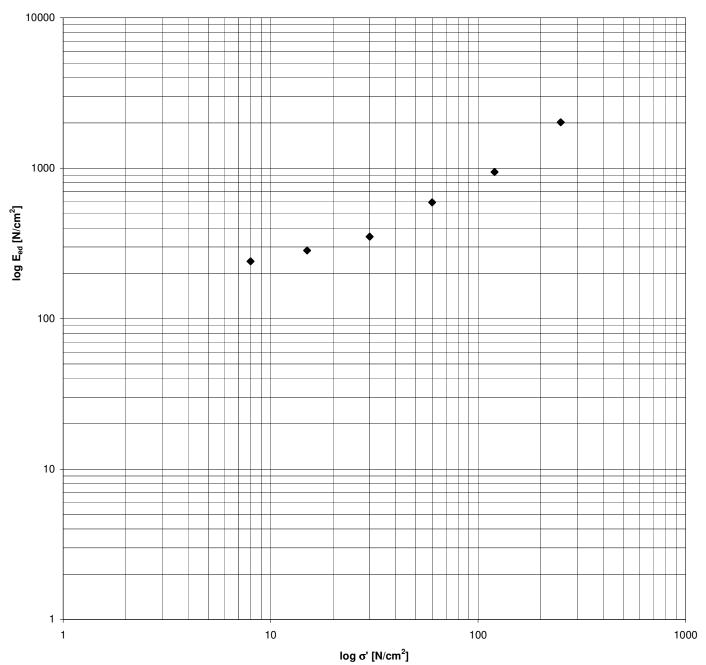
note

Lo Sperimentatore

Il Direttore del Laboratorio

Salvatore Febo

Verbale di accettazione 04/2006


Certificato n. -

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

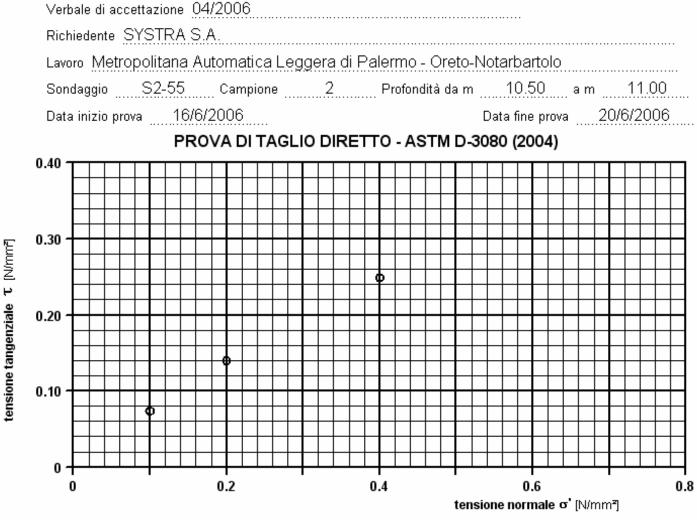
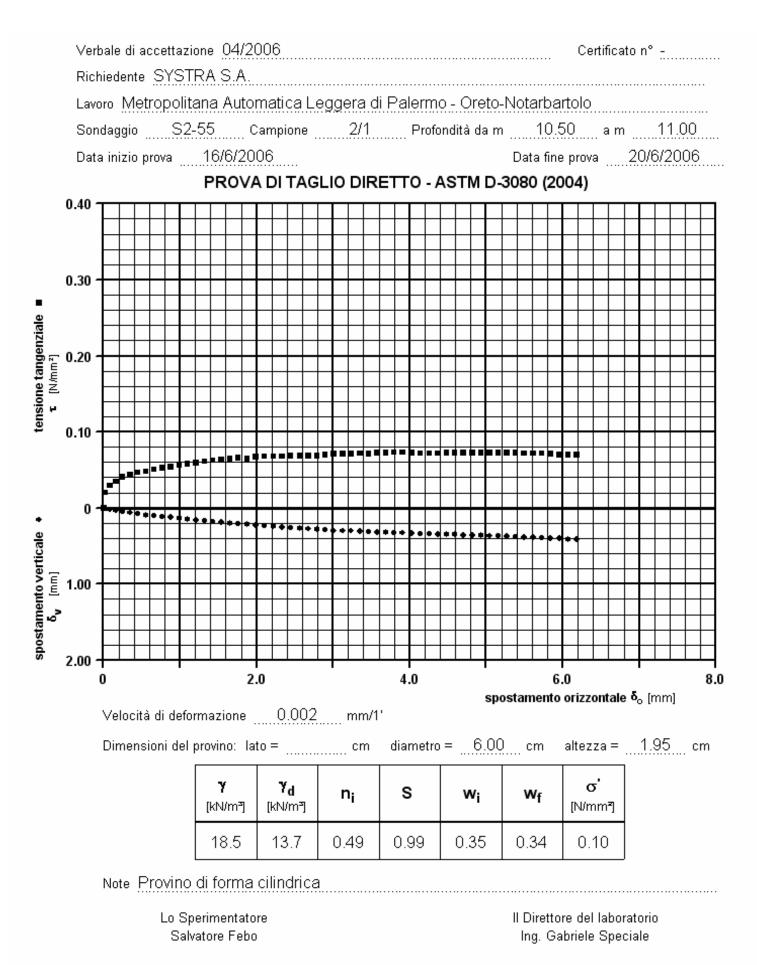
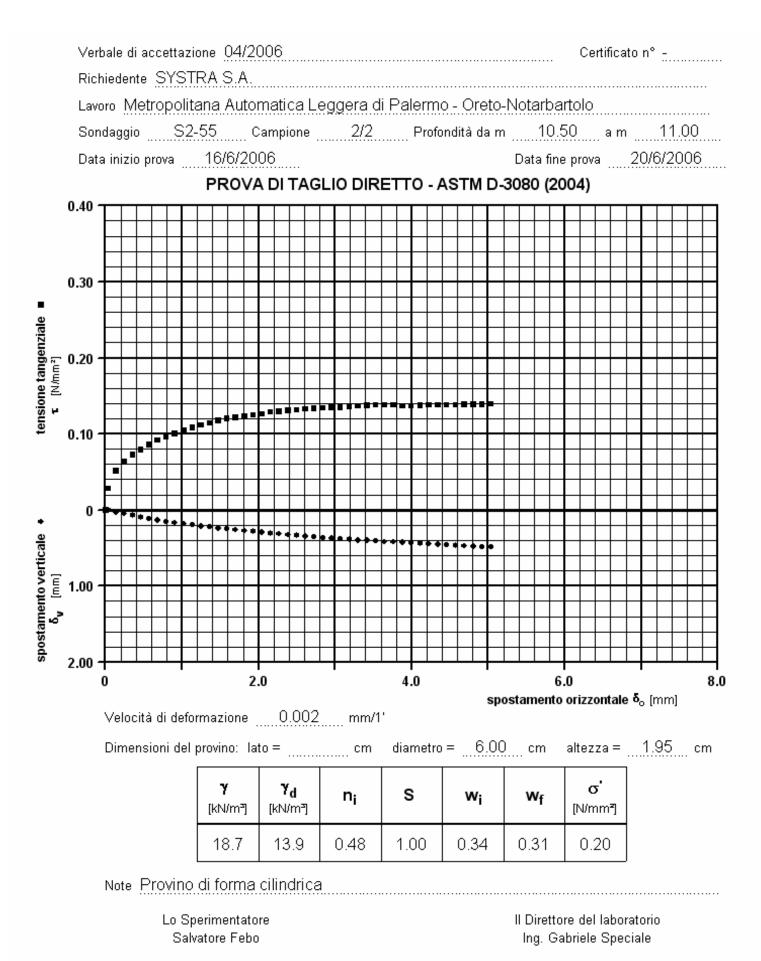

Sondaggio S2-55 Campione 2 Profondità da m 10,50 a m 11,00

diagramma log E_{ed} / log σ'

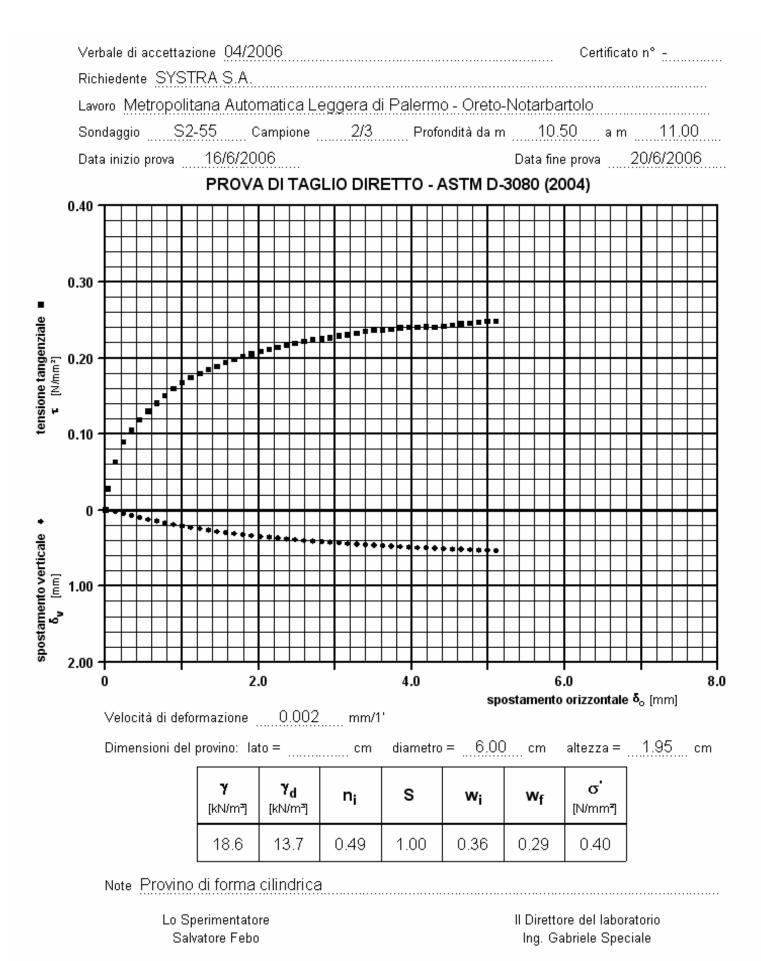
Lo Sperimentatore Salvatore Febo


Velocità di deformazione	0.002	mm/1'
--------------------------	-------	-------

Provino	y [kN/m³]	Ϋ́ _d [kN/m³]	ni	ø	w _i	w _f	Ն_f [N/mm²]	σ' [N/mm²]	δ _{of} [mm]
1	18.5	13.7	0.49	0.99	0.35	0.34	0.074	0.10	3.83
2	18.7	13.9	0.48	1.00	0.34	0.31	0.140	0.20	4.99
3	18.6	13.7	0.49	1.00	0.36	0.29	0.249	0.40	4.99


Note Prova consolidata drenata

Lo Sperimentatore Salvatore Febo



Certificato n. -

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-55 Campione 2 Profondità da m 10,50 a m 11,00

RISULTATI DELLA PROVA DI TAGLIO DIRETTO - ASTM D-3080 (2004)

Data inizio prova 16/6/2006

Data fine prova 20/6/2006

	Data inic prova 20/0/2000									
Provino	1			2			3			
σ' [N/mm²] 0.1			0.2			0.4			
δ _o [mm]	$_{\tau} \; [\text{N/mm}^2]$	δ_v [mm]	δ _o [mm]	$_{\tau}\;[\text{N/m}\text{m}^2]$	δ_v [mm]	δ_{o} [mm]	τ [N/mm ²]	$\delta_v \; [mm]$		
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
0.014	0.021	0.002	0.032	0.029	0.000	0.029	0.028	0.005		
0.080	0.030	0.015	0.134	0.052	0.022	0.125	0.063	0.015		
0.159	0.035	0.030	0.240	0.064	0.042	0.229	0.089	0.042		
0.242	0.041	0.045	0.349	0.073	0.065	0.338	0.105	0.069		
0.342	0.044	0.057	0.455	0.080	0.087	0.446	0.119	0.098		
0.446	0.047	0.072	0.564	0.087	0.110	0.555	0.130	0.120		
0.551	0.049	0.087	0.678	0.092	0.130	0.666	0.141	0.145		
0.657	0.051	0.099	0.790	0.097	0.147	0.777	0.150	0.167		
0.762	0.053	0.111	0.901	0.101	0.162	0.888	0.160	0.189		
0.871	0.055	0.119	1.017	0.105	0.179	1.001	0.168	0.209		
0.983	0.056	0.131	1.129	0.109	0.192	1.112	0.174	0.228		
1.094	0.058	0.144	1.242	0.112	0.207	1.228	0.180	0.245		
1.202	0.060	0.154	1.356	0.115	0.217	1.341	0.185	0.265		
1.314	0.062	0.161	1.468	0.118	0.232	1.452	0.189	0.280		
1.420	0.063	0.173	1.582	0.121	0.242	1.568	0.194	0.294		
1.532	0.064	0.181	1.695	0.122	0.254	1.681	0.198	0.309		
1.645	0.065	0.193	1.812	0.124	0.267	1.795	0.202	0.321		
1.756	0.066	0.201	1.923	0.125	0.277	1.908	0.205	0.336		
1.874	0.065	0.208	2.039	0.127	0.289	2.024	0.209	0.348		
1.985	0.068	0.220	2.151	0.129	0.299	2.137	0.212	0.358		
2.099	0.068	0.228	2.265	0.130	0.309	2.250	0.214	0.368		
2.215	0.068	0.235	2.381	0.132	0.321	2.364	0.217	0.380		
2.326	0.068	0.248	2.492	0.132	0.331	2.477	0.219	0.388		
2.444	0.069	0.255	2.606	0.133	0.341	2.593	0.222	0.398		
2.558	0.069	0.260	2.720	0.134	0.351	2.706	0.224	0.405		
2.670	0.069	0.270	2.836	0.135	0.359	2.822	0.225	0.415		
2.786	0.069	0.277	2.950	0.135	0.369	2.933	0.226	0.422		
2.894	0.070	0.280	3.064	0.135	0.374	3.049	0.229	0.429		
3.006	0.071	0.292	3.180	0.137	0.381	3.162	0.231	0.439		
3.119	0.072	0.295	3.294	0.137	0.391	3.278	0.232	0.447		
3.230	0.072	0.292	3.411	0.138	0.396	3.394	0.235	0.454		
3.346	0.072	0.302	3.524	0.139	0.401	3.507	0.236	0.461		
3.460	0.072	0.307	3.641	0.139	0.411	3.620	0.237	0.469		
3.574	0.073	0.312	3.757	0.138	0.416	3.734	0.238	0.474		
3.685	0.073	0.317	3.873	0.137	0.423	3.847	0.239	0.483		
3.793	0.074	0.320	3.990	0.137	0.428	3.961	0.240	0.486		
3.906	0.074	0.322	4.106	0.138	0.436	4.074	0.241	0.491		
4.020	0.073	0.329	4.222	0.139	0.443	4.190	0.241	0.496		

Lo Sperimentatore

Il Direttore del Laboratorio

Salvatore Febo

Certificato n. -

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-55 Campione 2 Profondità da m 10,50 a m 11,00

RISULTATI DELLA PROVA DI TAGLIO DIRETTO - ASTM D-3080 (2004)

Data inizio prova 16/6/2006

Data fine prova 20/6/2006

Data III/210 prova 10/0/2000		Data line prova 20/0/2000
Provino 1	2	3
σ' [N/mm²] 0.1	0.2	0.4
$\delta_{\rm o} [{\rm mm}] _{\rm T} [{\rm N/mm^2}] \delta_{\rm v} [{\rm mm}]$	δ_{o} [mm] τ [N/mm ²] δ_{v} [mm]	δ_{o} [mm] τ [N/mm ²] δ_{v} [mm]
4.137 0.072 0.332	4.336 0.138 0.448	4.303 0.241 0.503
4.137 0.072 0.332 4.253 0.072 0.334	4.453 0.138 0.453	4.416 0.242 0.506
4.366 0.072 0.339	4.433 0.136 0.433 4.571 0.139 0.461	4.532 0.243 0.510
4.477 0.073 0.339	4.685 0.139 0.468	4.646 0.245 0.515
4.586 0.073 0.344	4.799 0.139 0.473	4.761 0.246 0.520
4.699 0.073 0.352	4.915 0.139 0.478	4.877 0.247 0.525
4.812 0.073 0.352	5.032 0.140 0.481	4.990 0.249 0.528
4.926 0.073 0.357	3.032 0.140 0.461	5.097 0.249 0.533
5.037 0.073 0.359		3.037 0.249 0.333
5.151 0.073 0.362		
5.268 0.073 0.369		
5.379 0.073 0.374		
5.493 0.072 0.379		
5.607 0.072 0.384		
5.723 0.072 0.386		
5.837 0.072 0.391		
5.955 0.071 0.394		
6.064 0.071 0.404		
6.175 0.071 0.409		
0.170 0.071 0.100		

Lo Sperimentatore Salvatore Febo

Rif. verbale di accettazione 04/2006 Certificato n. -

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-55 Campione 3 Profondità da m 18.00 a m 18.50

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo 7/6/2006

Data di arrivo in laboratorio 12/6/2006

Data di apertura 16/6/2006

Contenitore Fustella metallica

Dimensioni l = 41 cm

Condizioni campione Mediocri

Prove eseguite w

Rp [N/mm²] Descrizione

(Normativa ASTM D2487/00 – ASTM D2488/00)

Sabbia limosa di colore grigio, poco consistente, $w_n > w_p$, con fossili e sostanza organica. Si osservano piani di stratificazione perpendicolari rispetto all'asse del campione.

Lo Sperimentatore Salvatore Febo

Rif. verbale di accettazione 04/2006 Certificato n. -

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-55 Campione 4 Profondità da m 24.50 a m 25.00

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo 8/6/2006

Data di arrivo in laboratorio 12/6/2006

Data di apertura 22/6/2006

Contenitore Fustella metallica

Dimensioni l = 44 cm

Condizioni campione Mediocri

Prove eseguite γ , γ_s , G, w, w_p , w_l , CS, TD (CD)

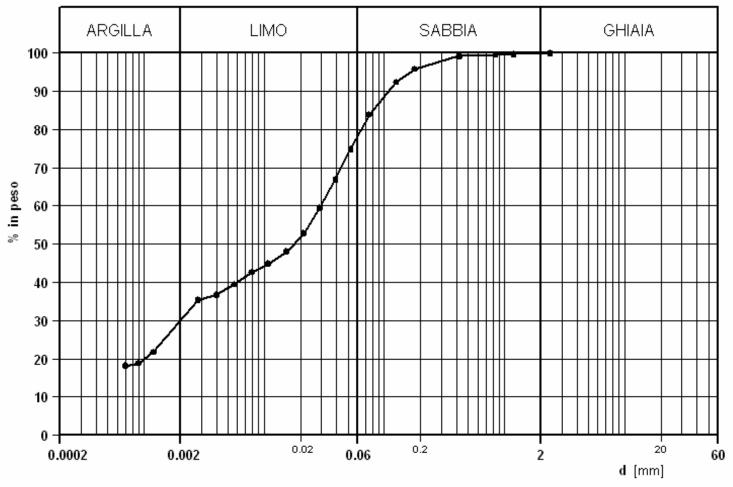
Rp [N/mm²] Descrizione

(Normativa ASTM D2487/00 - ASTM D2488/00)

Limo argilloso sabbioso di colore grigio, poco consistente, $w_n > w_p$, con

frammenti di fossili.

Lo Sperimentatore


Salvatore Febo

Il Direttore del Laboratorio

Verbale di acc	ettazione 04	1/2006			Cer	tificat	o n° -
Richiedente S	SYSTRA S.	Α					
Lavoro Metro	politana Ai	utomatica Le	eggera di Pal	lermo - Oreto-l	Votarbartolo		
Sondaggio	S2-55	Campione	4	Profondità da m	24.50	a m	25.00
Data inizio pro	va 28/6/	2006			Data fine prova	١	11/7/2006

ANALISI GRANULOMETRICA - ASTM D-422 (2002)

Composizione granulometrica Limo con argilla sabbioso

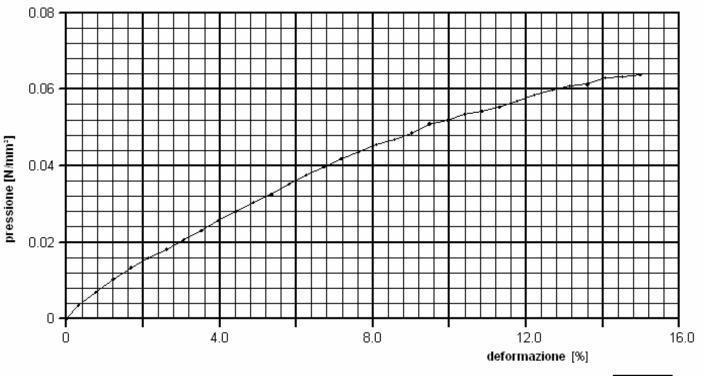
$$U = \frac{d_{60}}{d_{10}} = \frac{30}{100}$$
 % < d = 0,002 mm

Note _____

Lo Sperimentatore Salvatore Febo

www.laboratoriometro.it

E-mail: info@laboratoriometro.it


Verbale di acce	ttazione <u>04</u>	/2006			Cer	tificate	o n°
Richiedente S	YSTRA S.A	٩					
Lavoro Metrop	oolitana au	tomatica leg	gera di Pa	lermo - Oreto-N	otarbartolo		
Sondaggio	S2-55	Campione	4	Profondità da m	24.50	a m	25.00
Data inizio prov	a 6/7/2	2006			Data fine prova		7/7/2006

PROVA A COMPRESSIONE SU PROVINI CILINDRICI - ISRM (1978) CURVA PRESSIONE - DEFORMAZIONE

$$d = 78 \text{ mm} \text{ } \text{w} = 0.31$$

$$h = 174 \text{ mm}$$
 $\gamma = 19.4 \text{ kN/m}^3$

$$S_0 = 4778 \text{ mm}^2 \text{ v} = 1.6 \text{ mm/min}^{-1}$$

Schema di di rottura

Lo Sperimentatore

Salvatore Febo

Certificato n. -

 $\sigma [N/mm^2]$

Rif. verbale di accettazione 04/2006

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-55

Campione 4

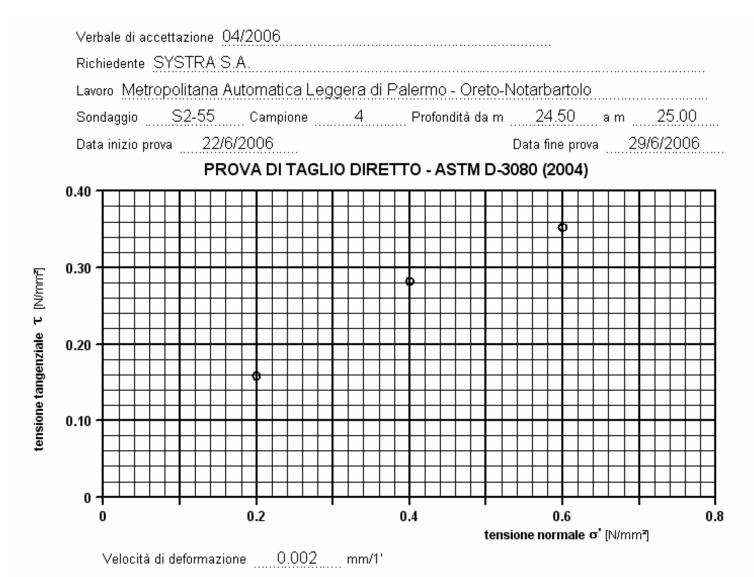
Profondità da m 24.50 a m 25.00

RISULTATI DELLA PROVA DI COMPRESSIONE SEMPLICE - ASTM D-2166 (2001)

Data inizio prova 6/7/2006

 ϵ [%] σ [N/mm²]

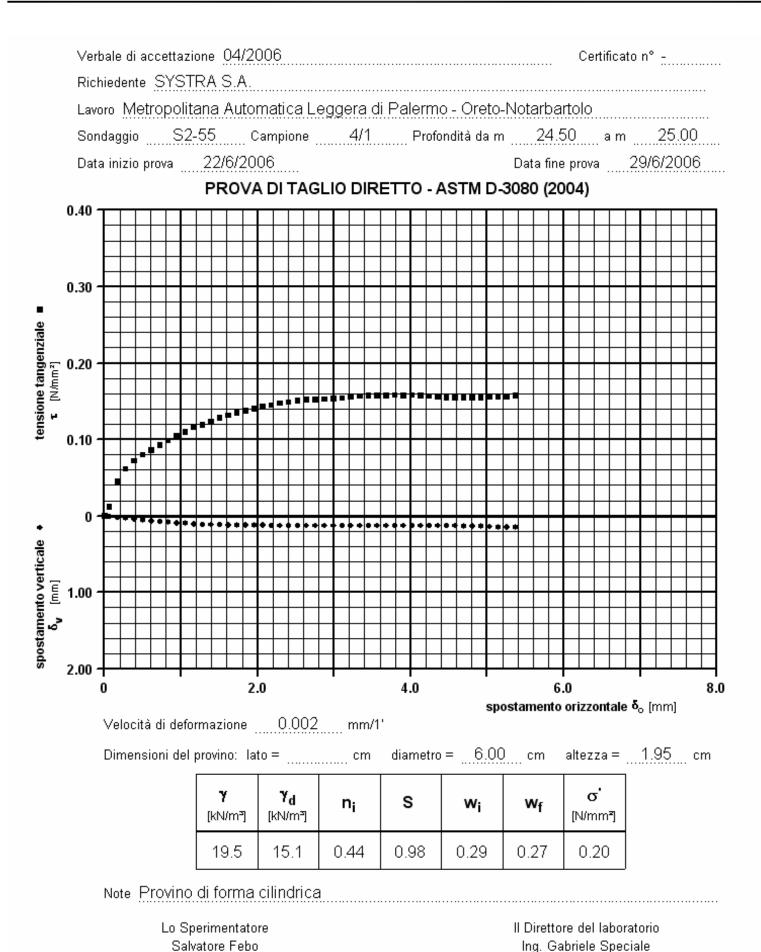
Data fine prova 7/7/2006


ε [%]

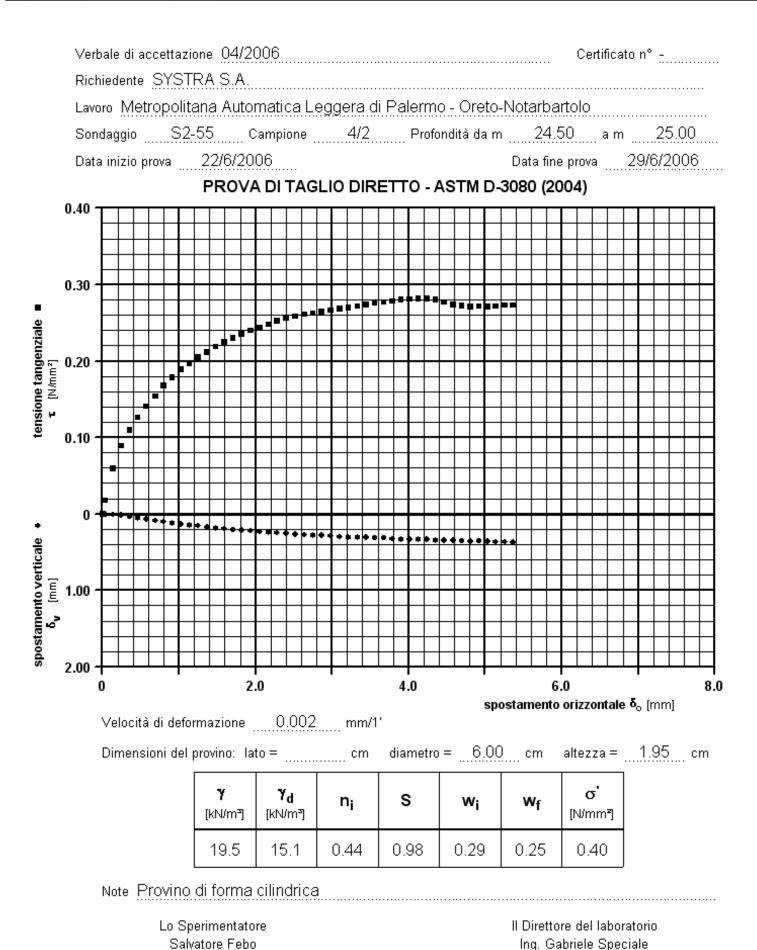
Data IIII210	prova 0/1/2	
ε [%]	$\sigma[N/mm^2]$	
0.000	0.000	
0.298	0.003	
0.758	0.007	
1.218	0.010	
1.678	0.013	
2.137	0.016	
2.597	0.018	
3.057	0.021	
3.517	0.023	
3.965	0.026	
4.425	0.028	
4.885	0.030	
5.344	0.032	
5.804	0.035	
6.264	0.038	
6.724	0.040	
7.172	0.042	
7.632	0.044	
8.091	0.046	
8.551	0.047	
9.011	0.049	
9.471	0.051	
9.931	0.052	
10.390	0.053	
10.850	0.054	
11.298	0.055	
11.758	0.057	
12.218	0.058	
12.678	0.060	
13.137	0.061	
13.597	0.061	
14.057	0.063	
14.517	0.063	
14.977	0.064	

ε [%]	σ [N/mm ²]

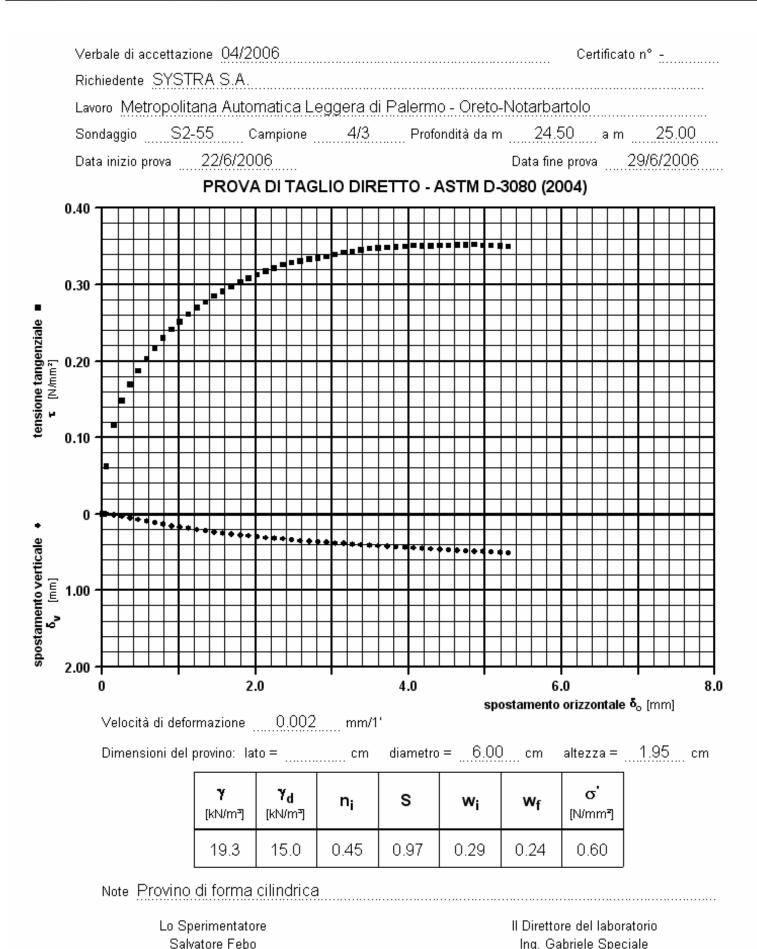
Lo Sperimentatore Salvatore Febo



Provino	y [kN/m³]	Υ _d [kN/m³]	n _i	s	w _i	w _f	Ն _f [N/mm²]	σ' [N/mm²]	δ _{of} [mm]
1	19.5	15.1	0.44	0.98	0.29	0.27	0.158	0.20	3.79
2	19.5	15.1	0.44	0.98	0.29	0.25	0.282	0.40	4.12
3	19.3	15.0	0.45	0.97	0.29	0.24	0.353	0.60	4.85


Note Prova consolidata drenata

Lo Sperimentatore Salvatore Febo



www.laboratoriometro.it

E-mail: info@laboratoriometro.it

Certificato n. -

Rif. verbale di accettazione 04/2006

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-55

Campione 4

Profondità da m 24,50 a m 25,00

RISULTATI DELLA PROVA DI TAGLIO DIRETTO - ASTM D-3080 (2004)

Data inizio prova 22/6/2006

Data fine prova 29/6/2006

Data inizio	prova 22/6	/2006		Data fine prova 29/6/2006				
Provino	1			2 3				
σ' [N/mm²] 0.2		0.4 0.6					
[mm] 2	[N1/ 21	c [mm]	[mm] 2	[N1/ 21	c [mm]	2 [mm]	[N1/ 21	c [mm]
δ_0 [mm]	τ [N/mm ²]	δ_v [mm]	δ_{o} [mm]	τ [N/mm ²]	δ_v [mm]	δ_{o} [mm]	τ [N/mm ²]	
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.061	0.012	0.005	0.035	0.018	0.005	0.048	0.063	0.000
0.164	0.045	0.015	0.131	0.060	0.005	0.145	0.117	0.012
0.274	0.062	0.027	0.239	0.089	0.012	0.251	0.149	0.029
0.384	0.072	0.039	0.348	0.110	0.030	0.358	0.169	0.048
0.496	0.080	0.051	0.458	0.127	0.047	0.464	0.187	0.072
0.606	0.087	0.061	0.572	0.141	0.064	0.573	0.203	0.091
0.719	0.093	0.070	0.685	0.155	0.082	0.679	0.218	0.110
0.829	0.099	0.078	0.794	0.168	0.099	0.788	0.231	0.131
0.941	0.105	0.090	0.907	0.179	0.114	0.899	0.242	0.153
1.054	0.110	0.092	1.020	0.189	0.128	1.008	0.252	0.169
1.164	0.116	0.100	1.131	0.197	0.141	1.119	0.261	0.186
1.276	0.120	0.107	1.245	0.205	0.151	1.230	0.270	0.201
1.389	0.124	0.109	1.361	0.212	0.166	1.344	0.278	0.217
1.501	0.128	0.112	1.474	0.219	0.180	1.455	0.285	0.232
1.614	0.132	0.114	1.587	0.225	0.188	1.568	0.291	0.248
1.726	0.135	0.117	1.703	0.231	0.200	1.682	0.297	0.260
1.839	0.138	0.119	1.816	0.236	0.210	1.796	0.303	0.274
1.951	0.141	0.119	1.935	0.241	0.217	1.907	0.308	0.284
2.064	0.144	0.119	2.048	0.244	0.230	2.018	0.313	0.296
2.179	0.145	0.121	2.162	0.249	0.237	2.132	0.318	0.306
2.291	0.148	0.121	2.277	0.253	0.242	2.243	0.322	0.315
2.404	0.149	0.121	2.393	0.256	0.252	2.356	0.326	0.322
2.519	0.151	0.121	2.512	0.259	0.259	2.470	0.329	0.334
2.636	0.152	0.121	2.630	0.261	0.269	2.583	0.331	0.346
2.753	0.152	0.121	2.743	0.263	0.272	2.697	0.334	0.356
2.871	0.153	0.121	2.859	0.265	0.277	2.811	0.335	0.360
2.988	0.154	0.121	2.977	0.267	0.284	2.924	0.337	0.368
3.101	0.155	0.126	3.093	0.269	0.292	3.038	0.340	0.380
3.218	0.156	0.121	3.209	0.270	0.299	3.151	0.342	0.382
3.333	0.157	0.121	3.325	0.272	0.299	3.263	0.343	0.396
3.445	0.158	0.121	3.441	0.274	0.301	3.374	0.345	0.401
3.560	0.158	0.121	3.554	0.276	0.306	3.487	0.347	0.408
3.675	0.158	0.121	3.670	0.277	0.311	3.601	0.348	0.415
3.788	0.158	0.121	3.783	0.279	0.319	3.717	0.349	0.422
3.900	0.158	0.124	3.897	0.281	0.326	3.830	0.349	0.430
4.015	0.158	0.121	4.008	0.281	0.326	3.946	0.350	0.432
4.128	0.158	0.121	4.121	0.282	0.331	4.060	0.351	0.439
4.240	0.157	0.121	4.237	0.282	0.331	4.176	0.351	0.449

Lo Sperimentatore

Salvatore Febo

Il Direttore del Laboratorio

Certificato n. -

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-55 Campione 4 Profondità da m 24,50 a m 25,00

RISULTATI DELLA PROVA DI TAGLIO DIRETTO - ASTM D-3080 (2004)

Data inizio prova 22/6/2006

Data fine prova 29/6/2006

		2 0.4			3 0.6	
		0.4			0.6	
					0.0	
δ_v [mm]	δ _o [mm]	τ [N/mm ²]	δ_v [mm]	δ _o [mm]	$\tau [N/mm^2]$	δ_v [mm]
	4.348					0.456
						0.461
0.124	4.574	0.274	0.341	4.517	0.351	0.468
0.129	4.690	0.273	0.346	4.628	0.352	0.473
0.131	4.801	0.272	0.353	4.742	0.352	0.480
0.131	4.912	0.272	0.351	4.853	0.353	0.487
0.136	5.026	0.271	0.358	4.966	0.352	0.489
0.141						0.496
						0.501
0.146	5.361	0.274	0.368	5.300	0.350	0.506
	0.129 0.131 0.131 0.136	0.121 4.461 0.124 4.574 0.129 4.690 0.131 4.801 0.131 4.912 0.136 5.026 0.141 5.136 0.143 5.250	0.121 4.461 0.277 0.124 4.574 0.274 0.129 4.690 0.273 0.131 4.801 0.272 0.131 4.912 0.272 0.136 5.026 0.271 0.141 5.136 0.272 0.143 5.250 0.274	0.121 4.461 0.277 0.338 0.124 4.574 0.274 0.341 0.129 4.690 0.273 0.346 0.131 4.801 0.272 0.353 0.131 4.912 0.272 0.351 0.136 5.026 0.271 0.358 0.141 5.136 0.272 0.363 0.143 5.250 0.274 0.363	0.121 4.461 0.277 0.338 4.403 0.124 4.574 0.274 0.341 4.517 0.129 4.690 0.273 0.346 4.628 0.131 4.801 0.272 0.353 4.742 0.131 4.912 0.272 0.351 4.853 0.136 5.026 0.271 0.358 4.966 0.141 5.136 0.272 0.363 5.075 0.143 5.250 0.274 0.363 5.191	0.121 4.461 0.277 0.338 4.403 0.352 0.124 4.574 0.274 0.341 4.517 0.351 0.129 4.690 0.273 0.346 4.628 0.352 0.131 4.801 0.272 0.353 4.742 0.352 0.131 4.912 0.272 0.351 4.853 0.353 0.136 5.026 0.271 0.358 4.966 0.352 0.141 5.136 0.272 0.363 5.075 0.351 0.143 5.250 0.274 0.363 5.191 0.351

Lo Sperimentatore

Salvatore Febo

Il Direttore del Laboratorio

Rif. verbale di accettazione 04/2006 Certificato n. -

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-55 Campione R1 Profondità da m 41.20 a m 41.50

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo 13/7/2006

Data di arrivo in laboratorio

Data di apertura 27/7/2006

Contenitore Sacchetto di plastica

Dimensioni 1 = 35 cm

Condizioni campione Campione rimaneggiato

Prove eseguite w

Rp [N/mm²] Descrizione

(Normativa ASTM D2487/00 - ASTM D2488/00)

Limo argilloso sabbioso di colore grigio, poco consistente, $w_n > w_p$, con

frustoli nerastri.

Lo Sperimentatore

Salvatore Febo

Il Direttore del Laboratorio

Rif. verbale di accettazione 04/2006 Certificato n. -

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-56 Campione 1 Profondità da m 9.00 a m 9.40

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo

Data di arrivo in laboratorio 4/7/2006

Data di apertura 7/7/2006

Contenitore Fustella metallica

Dimensioni 1 = 29 cm

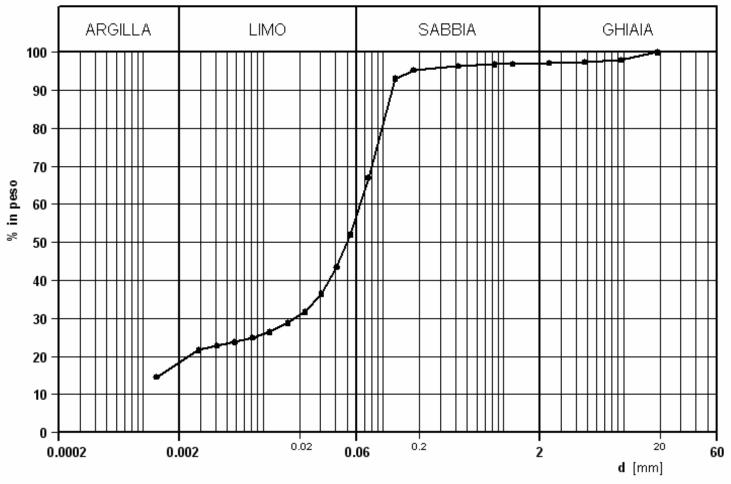
Condizioni campione Buone

Prove eseguite γ , γ_s , G, w, CE, TD (CD)

Rp [N/mm²] Descrizione

(Normativa ASTM D2487/00 - ASTM D2488/00)

Limo sabbioso e sabbia limosa di colore giallastro, poco consistente, $w_n > w_p$, con frammenti di fossili.


Lo Sperimentatore Salvatore Febo Il Direttore del Laboratorio Ing. Gabriele Speciale

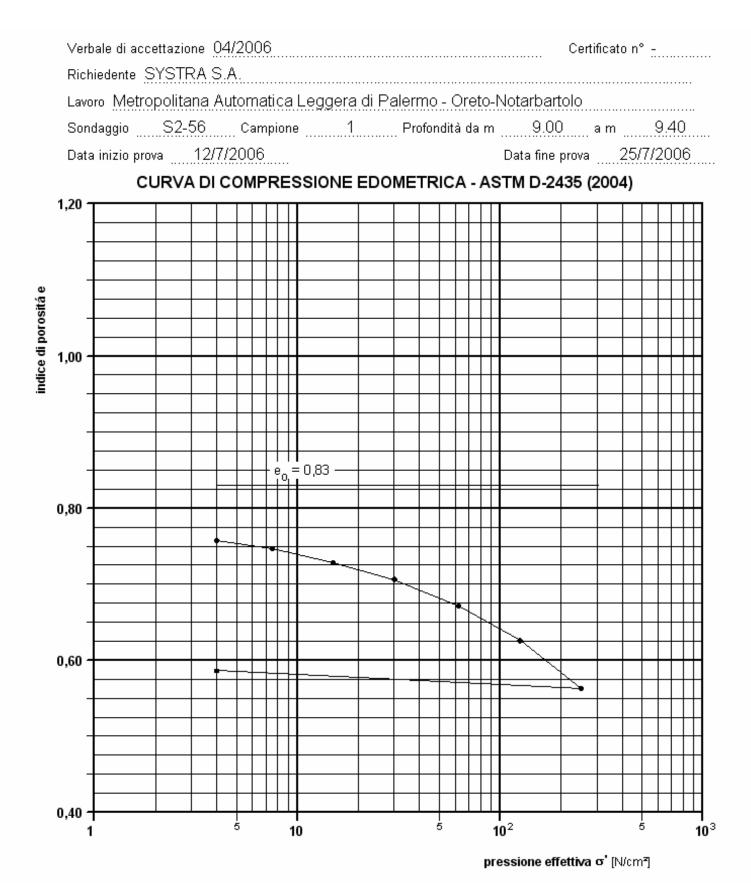
Modulo 9.29A – Rev. 1 del 06/06/05

Verbale di accettazione)4/2006			Ce	rtificato n°	-	
Richiedente SYSTRAS	S.A.						
Lavoro Metropolitana A	Automatica Leg	ggera di Pa	alermo - Oreto-N	Votarbartolo			
Sondaggio S2-56	Campione	1	Profondità da m	9.00	am	9.40	
Data inizio prova 11/	7/2006			Data fine prova	a 14/7	7/2006	

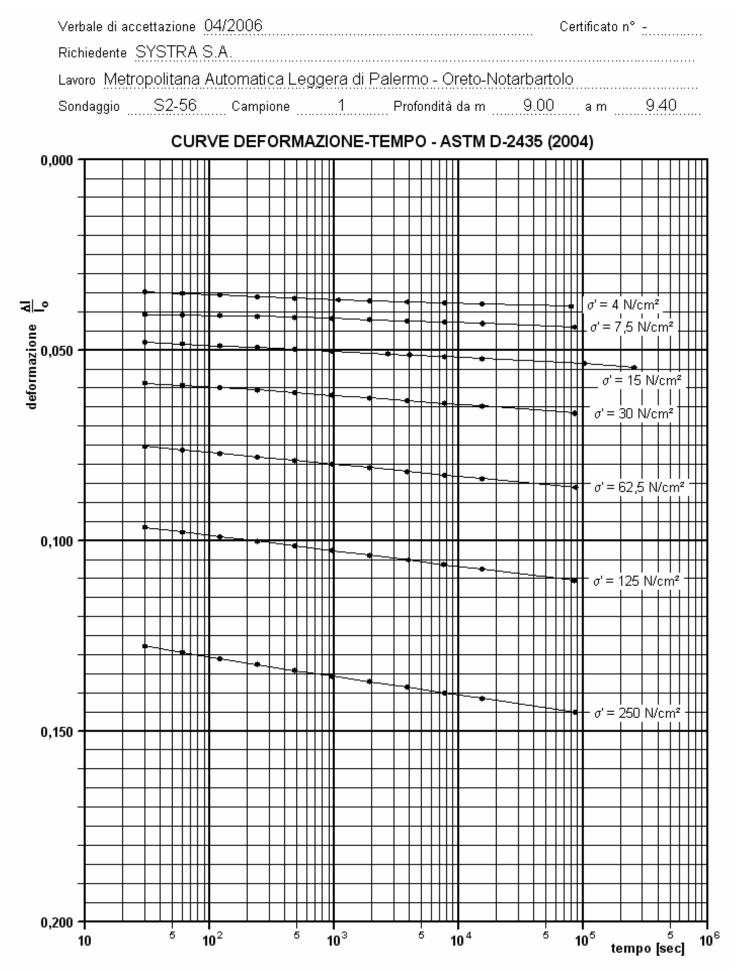
ANALISI GRANULOMETRICA - ASTM D-422 (2002)

Composizione granulometrica Sabbia con limo argillosa

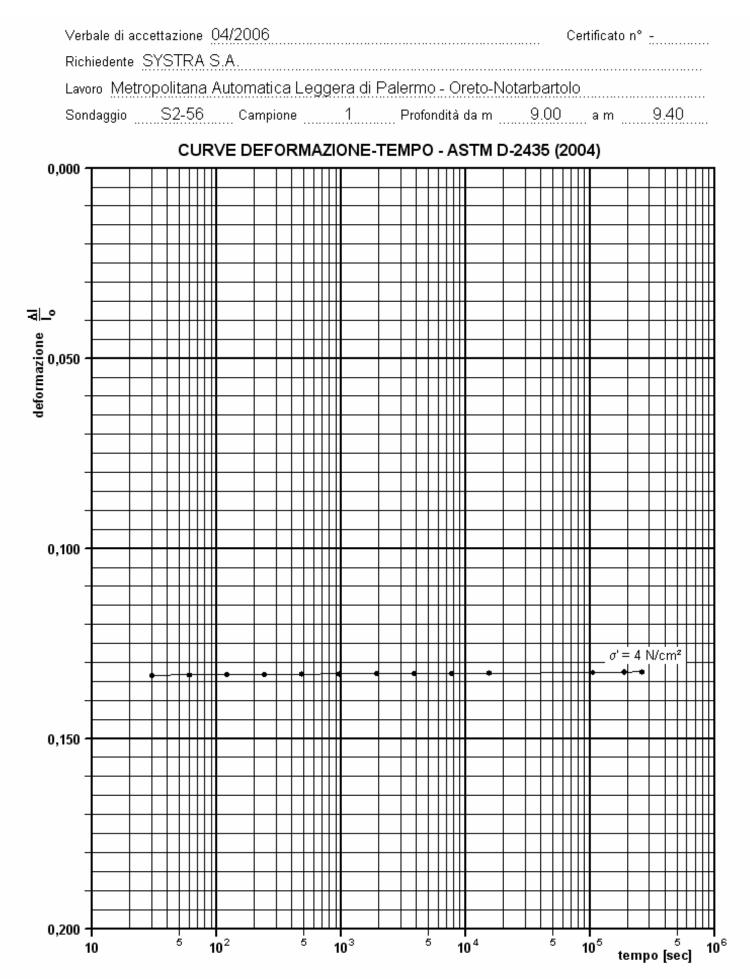
$$U = \frac{d_{60}}{d_{10}} = \frac{d_{60}}{d_{10}} = \frac{19}{19}$$


Note _____

Lo Sperimentatore Salvatore Febo



Verbale di accettazione	04/2006	; 					Certifica	to n°	
Richiedente SYSTRA	S.A								
Lavoro Metropolitana	Automat	tica Leg	gera di F	Palermo	- Oreto-l	Votarbar	tolo		
Sondaggio S2-56	Camı	pione	1	Profon	dità da m	9.0	0am	9.4	40
Data inizio prova12	/7/2006					Data fine	prova	25/7/20	06
PROVA	DI COM	PRESS	IONE E	DOMET	RICA - A	ASTM D	-2435 (2	004)	
Dimensioni del pro	ovino:	dian	netro d = s	50 mm		altezza	l _o = 20 mi	m	
		Carati	teristiche	e iniziali					
Peso d	lell'unitá di	volume		γ	=	18,9	kN/m³		
Peso s	ecco dell'u	unitá di vol	lume	γ	d =	14,4	kN/m³		
Peso s	pecifico			γ	s =	26,4	kN/m³		
Conter	uto d'acqu	ıa		W	· =!	0,31			
Indice	di porositá			е	o =!	0,83			
Grado	di saturazi	ione		S	=!	0,99			
		Risulta	ati della i	prova					
Peso d	lell'unitá di	volume fii	nale	γ	f =	19,7	kN/m³		
Conter	uto d'acqu	ıa finale		W	_f =	0,25			
Pressione σ' [N/cm²]	4,0	7,5	15,0	30,0	62,5	125,0	250,0		
Indice di porositá	0,757	0,747	0,728	0,706	0,671	0,626	0,563		
e scarico	0,586								
Note									



E-mail: info@laboratoriometro.it

Rif. verbale di accettazione: 04/2006 Certificato n. -

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-56 Campione 1 Profondità da m 9.00 a m 9.40

PROVA DI COMPRESSIONE EDOMETRICA GRANDEZZE CARATTERISTICHE

σ ′ [N/cm²]	Eed [N/cm ²]	m _V [cm ² /N]	c _V [cm ² /sec]	k [cm/sec]
4.0 ÷ 7.5	620	1.6×10^{-3}		
7.5 ÷ 15.0	679	1.5×10^{-3}		
15.0 ÷ 30.0	1176	8.5×10^{-4}		
30.0 ÷ 62.5	1563	6.4×10^{-4}		
62.5 ÷ 125.0	2335	4.3×10^{-4}		
125.0 ÷ 250.0	3210	3.1×10^{-4}		

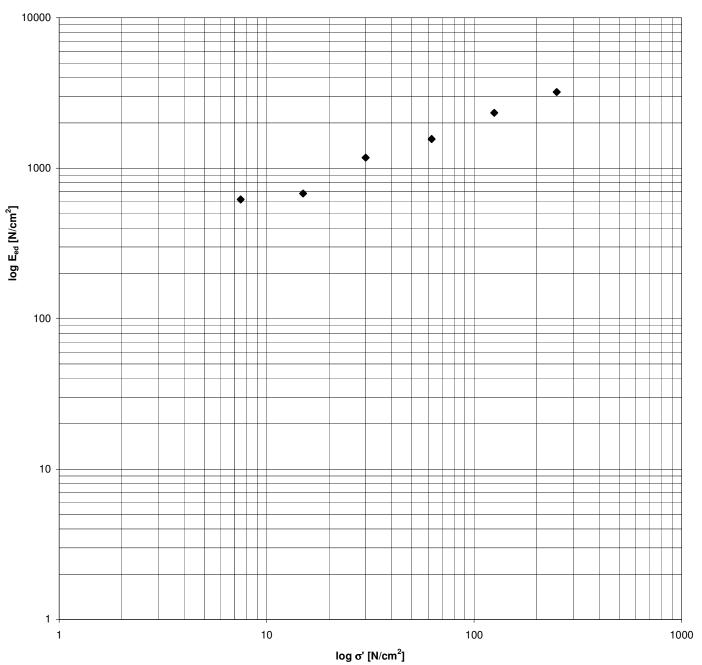
note

Lo Sperimentatore

Il Direttore del Laboratorio

Salvatore Febo

Verbale di accettazione 04/2006


Certificato n. -

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

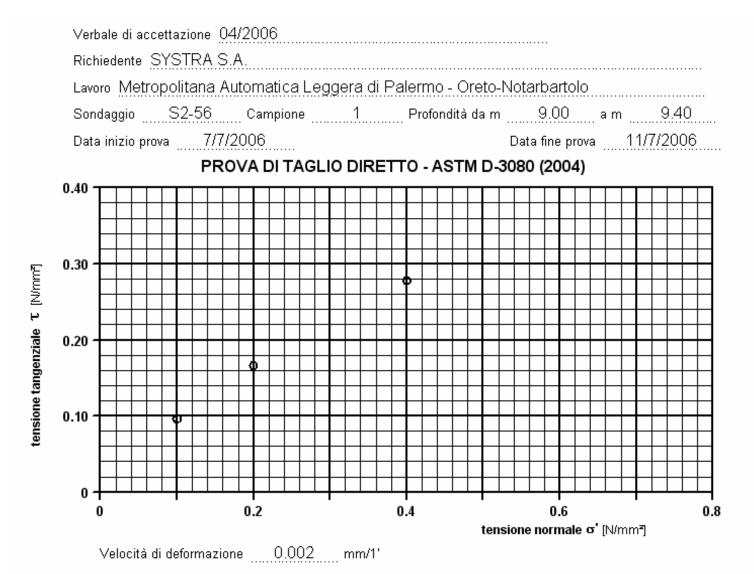
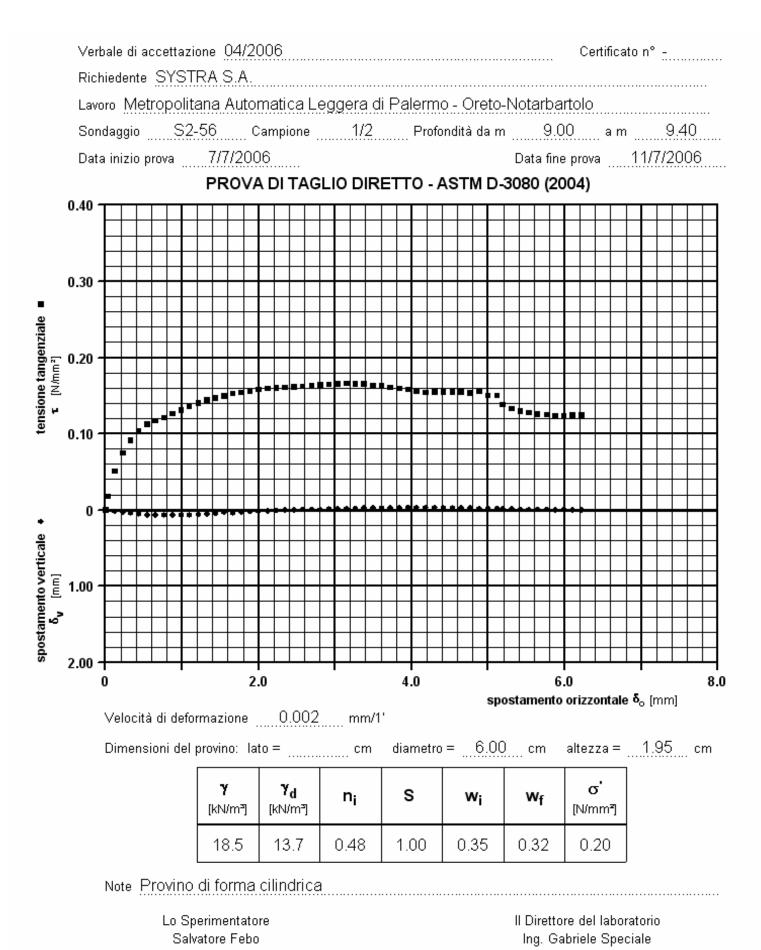

Sondaggio S2-56 Campione 1 Profondità da m 9,00 a m 9,40

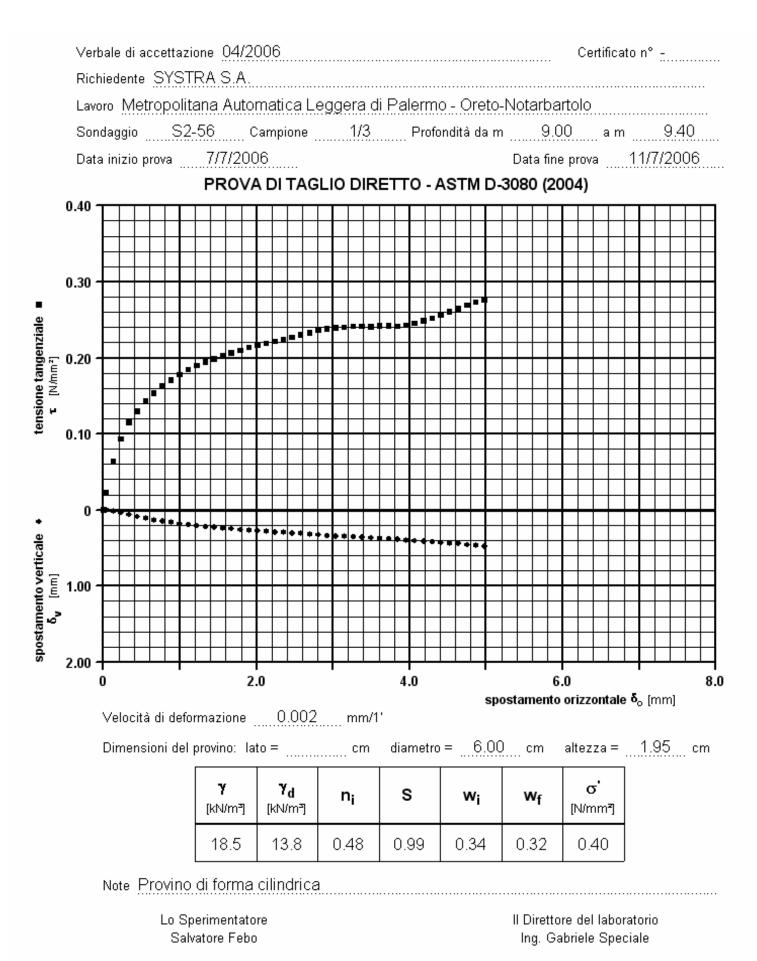
diagramma log E_{ed} / log σ'

Lo Sperimentatore Salvatore Febo

Provino	y [kN/m³]	Υ _d [kN/m³]	ni	s	w _i	w _f	ፒ _f [N/mm²]	σ' [N/mm²]	δ _{of} [mm]
1	18.4	13.5	0.49	1.00	0.36	0.34	0.096	0.10	3.98
2	18.5	13.7	0.48	1.00	0.35	0.32	0.166	0.20	3.11
3	18.5	13.8	0.48	0.99	0.34	0.32	0.278	0.40	5.00


Note Prova consolidata drenata

Lo Sperimentatore Salvatore Febo



	V	erŁ	ale	d	ac	CC	etta	az	ion	е	.04	1/2	200)6																					C	ert	ific	ato	n°	Ξ.			
	Ri	ich	nied	en	te	S	YS	<u>S</u> Ţ	R	Α.	S.	Α.																															
	La	avc	ro	M	et	ro.	рç	lit	ar	ıa.	A!	uto	m	ati	C6	a L	.e	gg	er	a.	di.	Ρ	al.	er	m	o	C)re	eto	<u>-N</u>	lot	ar	ba	arto	olo)							
	S	on	dag	gi	٠.			92	-5	6			Са	mp	ior	ne			1	/1				Pr	ofc	nd	lità	da	an	n .			9.0	00			ar	n .		9	1.4	0	
	D	ata	a ini	zi	р	ro۱	/a			7/	7/2	20	06	i 																	Da	ta	fin	еþ	ro	va		1	1/	7/2	200)6	
									ı	PF	RC	٧	Α	DI	T	ΑC	GL	.IC) [OIF	₹E	ΞT	Т	0	- /	48	Ή	M	D.	3	9	0	(2	00	4)								
	0.40) -						Г	Γ	Γ	T	T	T	T	Γ	T	T	T	Ţ	T	Ţ	\Box	\Box						Г	Γ		Γ	T	Γ	T	T	T	T	Γ		П	\Box	\Box
			\vdash				\vdash	┞	+	+	+	+	╀	+	+	+	+	╀	+	+	+	+	\dashv				\vdash		┞	+	+	+	+	╀	+	+	+	+	┝		\dashv	+	\dashv
			F					F	F	Ŧ	Ŧ	Ŧ	Ŧ	+	F	Ŧ	Ŧ	Ŧ	+	7	7	\dashv	\dashv						F	F		Ŧ	Ŧ	Ŧ	+	+	+	+	H		\dashv	7	7
	0.30) -	Ħ					t	t	t	ļ	‡	‡	t	t	‡	‡	t	#	#	#		╛						L	t		t	‡	t	t	#	#	#	t			\downarrow	╛
ט			Н					\vdash	+	+	+	+	+	+	+	+	+	+	+	+	+	+	\dashv						\vdash	\perp		+	+	+	+	+	+	+	H			+	\exists
tensione tangenziare t [N/mm²]								F	F	F	Ŧ	Ŧ	F	F	F	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	7	\dashv	\dashv						F	F		F	Ŧ	F	\perp	\perp	\perp	\perp	H		\dashv	\dashv	\dashv
E E	0.20) -	L					L	t	t	ļ	‡	t	t	t	t	#	‡	#	#	#		╛						Ė	İ	İ	t	ļ	t	t	ļ	t	ļ	Ė			\dashv	コ
NAMM?			\vdash					\vdash	+	+	+	+	+	+	+	+	+	+	+	+	+	+	\dashv						\vdash	\perp		+	+	+	+	+	+	+	H			+	\exists
								F	F	F	Ŧ	Ŧ	F	F	F	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	7	\dashv	\dashv						F	F		F	Ŧ	F	\perp	\perp	\perp	\perp	H		\dashv	\dashv	\exists
-	0.10) -	F					Ļ		•	t	ţ	⇟	••	•	•	┇	ţ	1	┇	┇	•	• •	•	•		•	•	•			†	•	t	T	t	ļ	ļ	İ			\dashv	╛
				_	•	••		Ė	\perp	\pm	\pm	\pm	t	\perp	t	\pm	\pm	t	\pm	\pm	\pm	\pm	\exists						L	\perp		\pm	\pm	t	\perp	$\frac{1}{2}$	+	\pm	L			\pm	\exists
								L	+	+	+	\downarrow	╀	+	+	\perp		Į.	\perp	_					_ !			Ŀ	L.	L		ļ.	\downarrow	╀	+	+	+	+	H		\Box	\dashv	\dashv
•	() -	╚	*	**	•	•	•	**	•	1	†	†	1	ľ	ľ		Ϊ	<u> </u>	 	-			_			_	Ť			Ĭ	Ï	Ť	t	t	t	ļ	ļ	Ė			7	╛
5								L	t	\pm	\pm	\pm	t	\perp	t	\pm	\pm	t	\pm	\pm	\pm	\pm	\exists						L	\perp		\pm	\pm	t	\perp	\pm	\pm	\pm	t			\pm	\exists
δ _V [mm]			\vdash				┝	┞	+	╀	+	+	╀	+	╀	+	+	╀	+	+	+	+	\dashv			L	L	L	┞	\vdash	\vdash	╀	+	╀	+	+	+	+	╀		\dashv	+	\dashv
Ē	1.00) -	F					F	T	ļ	ļ	ļ	ļ	T	T	ļ	Ť	ļ	ļ	†	7	7	╡						F	ļ		ļ	ļ	ļ	T	T	T	T	F			\dashv	╡
<u>م</u>								L	t	$^{+}$	\pm	\pm	t	t	\pm	\pm	\pm	t	\pm	\pm	\pm	\pm	Ⅎ						L			$^{+}$	\pm	t	\pm	\pm	\pm	\pm	L		\exists	\pm	\exists
ende			H					┞	+	+	+	+	╀	+	+	+	+	╀	+	+	+	+	\dashv						┞	+		+	+	╀	+	+	+	+	H			+	\dashv
,	2.00		0					_				- ;	1 2.0					+					4.	0					_				ε	i.0					_				8.
														_	_		_						•••	_					sp	os	tar	ne				zor	ıtal	le 8	· [1	mm	1]		
			Ve	loc	ità	di	i d	efc	rm	ıaz	ior	1e			0.0	IO2	<u>?</u>		m	ım.	/1'																						
			Dir	ne	nsi	on	ii d	el	pro	ovi	no:	ŀ	ato	=					(cm		d	iar	ne	tro	=		6	.00	2	(cm	1	al	lte:	ZZ8	g =		.1.	95		cr	n
											γ √π	ı ^a]		1 [kN	/ _d	13]			nį				s	i			٧	٧i			٧	٧f			N/I	σ' mn	n₹]						
										1	8.4	1		13	3.5	5		0	.4	9		,	1.0	00			0.3	36)		0.	34	1		0	.10)						
			No	te	Ρ	ro	yir	no	di	i fo	orr	na	1 C	ilin	ıdr	ic	a																										
						I					eni e F																											orat ecia	ori	0			

Certificato n. -

Rif. verbale di accettazione 04/2006

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-56 Campione 1 Profondità da m 9,00 a m 9,40

RISULTATI DELLA PROVA DI TAGLIO DIRETTO - ASTM D-3080 (2004)

Data inizio prova 7/7/2006

Data fine prova 11/7/2006

					Data iiile j	JIOVA 11/1/2	.000
Provino 1			2			3	
σ' [N/mm²] 0.1			0.2			0.4	
δ_0 [mm] τ [N/mm ²]	s [mm]	δ _o [mm]	τ [N/mm²]	δ_{v} [mm]	δ _o [mm]	τ [N/mm²]	s [mm]
1							
0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.017 0.012	0.007	0.027	0.018	0.007	0.031	0.024	-0.005
0.084 0.019	0.012	0.121	0.051	0.015	0.125	0.064	0.010
0.142 0.027	0.020	0.223	0.075	0.022	0.227	0.093	0.032
0.217 0.033	0.025	0.324	0.092	0.040	0.333	0.115	0.056
0.305 0.039	0.035	0.433	0.104	0.052	0.439	0.130	0.081
0.387 0.045	0.040	0.540	0.113	0.062	0.548	0.143	0.103
0.481 0.051	0.047	0.648	0.117	0.062	0.656	0.154	0.128
0.574 0.055	0.047	0.760	0.122	0.065	0.769	0.163	0.145
0.667 0.060	0.050	0.871	0.127	0.065	0.880	0.171	0.155
0.765 0.064	0.052	0.983	0.132	0.065	0.991	0.178	0.179
0.869 0.068	0.052	1.094	0.137	0.062	1.107	0.185	0.191
0.972 0.070	0.052	1.210	0.141	0.057	1.218	0.190	0.201
1.078 0.073	0.052	1.322	0.145	0.052	1.329	0.195	0.213
1.182 0.077	0.052	1.435	0.147	0.042	1.445	0.199	0.223
1.293 0.080	0.052	1.547	0.150	0.032	1.556	0.203	0.233
1.402 0.082	0.047	1.661	0.153	0.035	1.669	0.207	0.245
1.507 0.085	0.042	1.775	0.154	0.027	1.785	0.210	0.253
1.618 0.087	0.035	1.888	0.156	0.020	1.898	0.214	0.260
1.726 0.089	0.025	2.000	0.158	0.017	2.012	0.217	0.267
1.839 0.090	0.017	2.116	0.160	0.012	2.123	0.219	0.277
1.953 0.091	0.007	2.232	0.161	0.005	2.236	0.222	0.285
2.067 0.091	0.002	2.344	0.161	0.000	2.349	0.225	0.290
2.180 0.091	-0.005	2.460	0.162	-0.005	2.463	0.227	0.299
2.295 0.090	-0.012	2.574	0.162	-0.010	2.576	0.231	0.304
2.405 0.091	-0.020	2.690	0.163	-0.012	2.692	0.233	0.312
2.518 0.092	-0.025	2.804	0.164	-0.012	2.805	0.236	0.321
2.631 0.092	-0.032	2.918	0.165	-0.015	2.916	0.238	0.334
2.745 0.092	-0.037	3.032	0.166	-0.020	3.029	0.240	0.339
2.857 0.091	-0.042	3.146	0.166	-0.025	3.145	0.241	0.341
2.969 0.091	-0.050	3.262	0.166	-0.025	3.263	0.242	0.348
3.082 0.091	-0.052	3.376	0.166	-0.027	3.377	0.242	0.356
3.196 0.091	-0.052	3.490	0.164	-0.032	3.495	0.241	0.363
3.305 0.092	-0.054	3.604	0.163	-0.032	3.608	0.242	0.368
3.419 0.093	-0.054	3.717	0.161	-0.032	3.722	0.242	0.375
3.531 0.093	-0.057	3.834	0.160	-0.032	3.835	0.242	0.383
3.644 0.094	-0.054	3.948	0.158	-0.037	3.951	0.243	0.395
3.756 0.095	-0.054	4.061	0.157	-0.037	4.064	0.245	0.400
3.867 0.095	-0.057	4.180	0.154	-0.037	4.180	0.249	0.410

Lo Sperimentatore

Il Direttore del Laboratorio

Salvatore Febo

Certificato n. -

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-56 Campione 1 Profondità da m 9,00 a m 9,40

RISULTATI DELLA PROVA DI TAGLIO DIRETTO - ASTM D-3080 (2004)

Data inizio prova 7/7/2006

Data fine prova 11/7/2006

Lo Sperimentatore

Salvatore Febo

Il Direttore del Laboratorio

Certificato n. -

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-56 Campione 2 Profondità da m 11.00 a m 11.50

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo

Data di arrivo in laboratorio 4/7/2006

Data di apertura 7/7/2006

Contenitore Fustella metallica

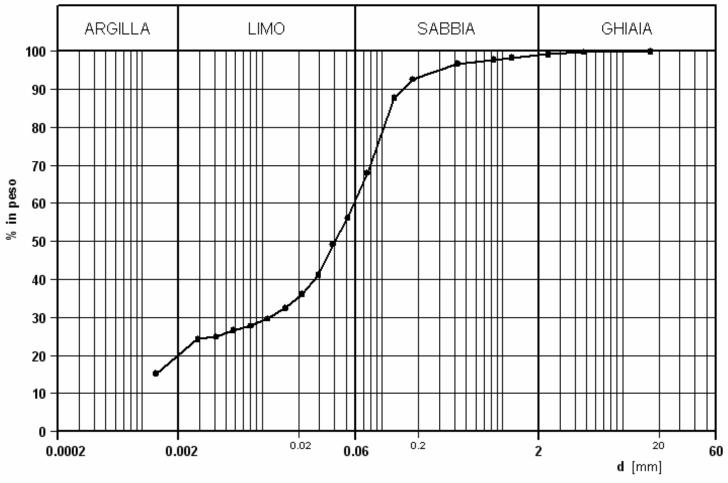
Dimensioni 1 = 37 cm

Condizioni campione Buone

Prove eseguite γ , γ_s , G, w, CE, TD (CD)

Rp [N/mm²] Descrizione

(Normativa ASTM D2487/00 - ASTM D2488/00)


Sabbia limosa di colore grigio verdastro, $w_n \ge w_p$.

Lo Sperimentatore Salvatore Febo Il Direttore del Laboratorio

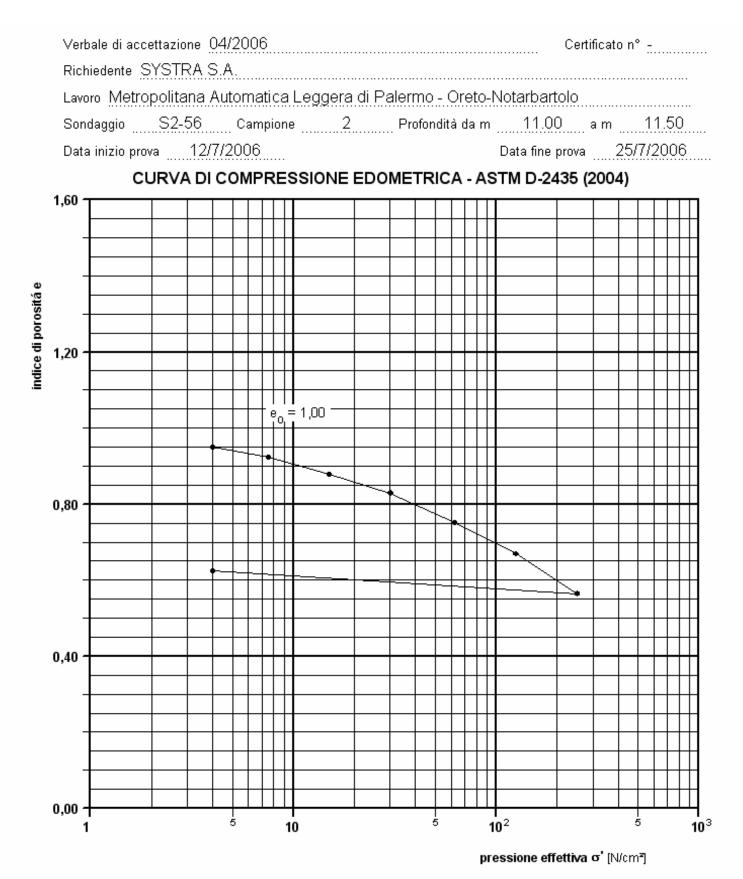
Verbale di acc	ettazione <u>04</u>	/2006			Се	rtificato n°		
Richiedente S	SYSTRA S.A	٩						
Lavoro Metro	politana Au	tomatica Le	ggera di P	alermo - Oreto-l	Votarbartolo			
Sondaggio	S2-56	Campione	2	Profondità da m	11.00	am	11.50	
Data inizio pro	va 11/7/3	2006			Data fine prov	a 14/1	7/2006	

ANALISI GRANULOMETRICA - ASTM D-422 (2002)

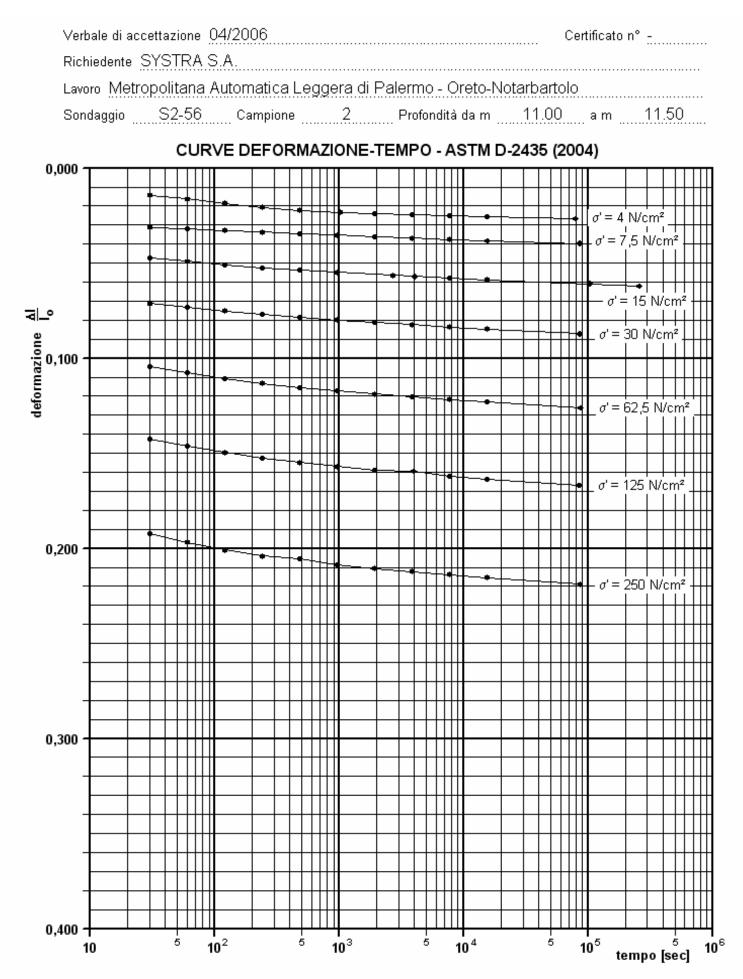
Composizione granulometrica Limo con sabbia argilloso

$$U = \frac{d_{60}}{d_{10}} = \frac{d_{60}}{d_{10}} = \frac{20}{d_{10}}$$

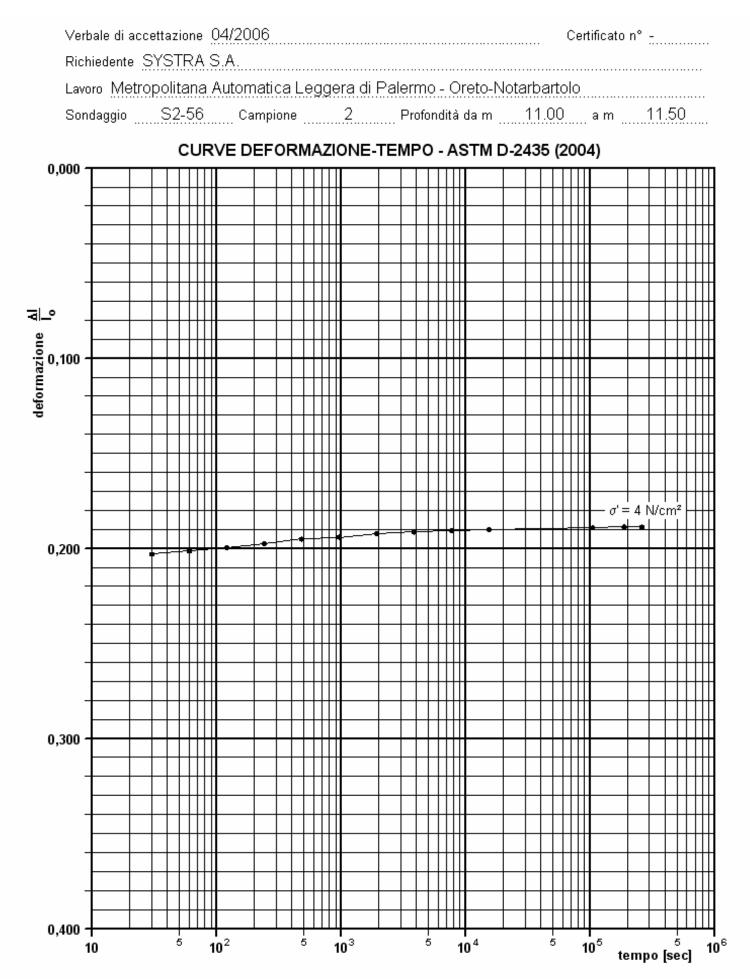
Note


.....

Lo Sperimentatore Salvatore Febo



Verbale di ac	cettazione	04/2006	S					Certificato	n°	
Richiedente										
Lavoro Metr										
Sondaggio				2	Profon	dità da m				
Data inizio pr								prova2		Ub
	PROVA	DICOM	PRESS	IONE EI	DOMET	RICA - A	STM D	-2435 (200	04)	
Dimen	sioni del pro	vino:	diar	netro d = 8	50 mm		altezza	I _o = 20 mm		
			Carat	teristiche	e iniziali					
	Peso d	ell'unitá di	volume		γ	=	18,1	kN/m³		
	Peso s	ecco dell'	unitá di vo	lume	γ	d =	13,2	kN/m³		
	Peso s	pecifico			γ	s =	26,5	kN/m³		
	Conten	uto d'acqu	ıa		W	r =!	0,37			
	Indice (di porositá			е	o =	1,00			
	Grado	di saturaz	ione		S	i =!	0,98			
			Diault	ati dalla i	p. r.o. 1.o.					
				ati della _l						
	Peso d	ell'unitá di	volume fii	nale	γ.	f =	20,1	kN/m³		
	Conten	uto d'acqu	ıa finale		W	r _f =!	0,26			
Press σ' [N/c		4,0	7,5	15,0	30,0	62,5	125,0	250,0		
Indice di porositá	carico	0,950	0,924	0,879	0,829	0,751	0,669	0,565		
е	scarico	0,625								
Note										



E-mail: info@laboratoriometro.it

Rif. verbale di accettazione: 04/2006 Certificato n. -

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-56 Campione 2 Profondità da m 18.50 a m 19.00

PROVA DI COMPRESSIONE EDOMETRICA GRANDEZZE CARATTERISTICHE

σ ′ [N/cm²]	Eed [N/cm ²]	m _V [cm ² /N]	c _V [cm ² /sec]	k [cm/sec]
4.0 ÷ 7.5	260	3.8×10^{-3}		
7.5 ÷ 15.0	321	3.1×10^{-3}		
15.0 ÷ 30.0	562	1.8×10^{-3}		
30.0 ÷ 62.5	762	1.3×10^{-3}		
62.5 ÷ 125.0	1344	7.4×10^{-4}	2.8×10^{-3}	1.2×10^{-8}
125.0 ÷ 250.0	1996	5.0×10^{-4}	2.6×10^{-3}	8.2×10^{-9}

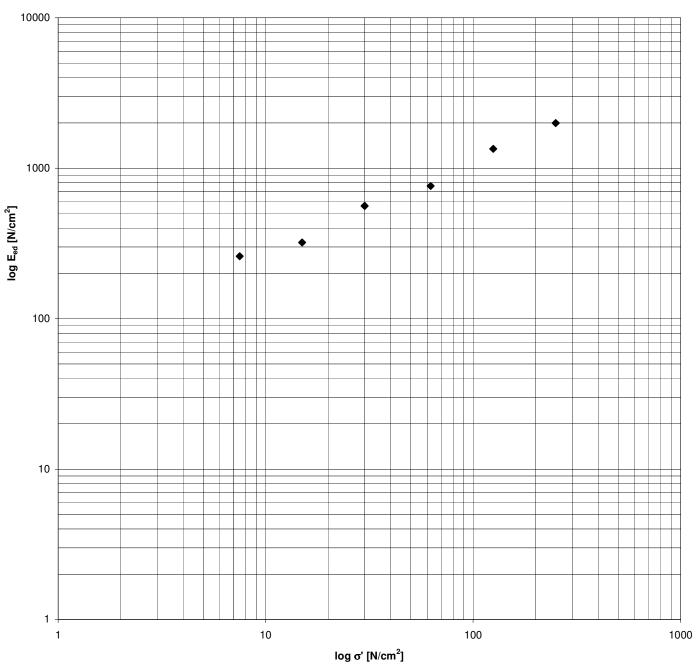
note

Lo Sperimentatore

Il Direttore del Laboratorio

Salvatore Febo

Verbale di accettazione 04/2006


Certificato n. -

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

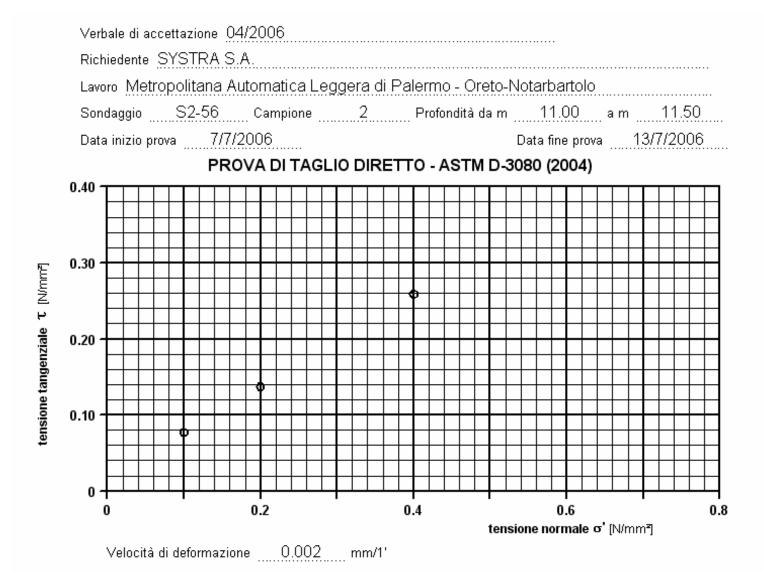
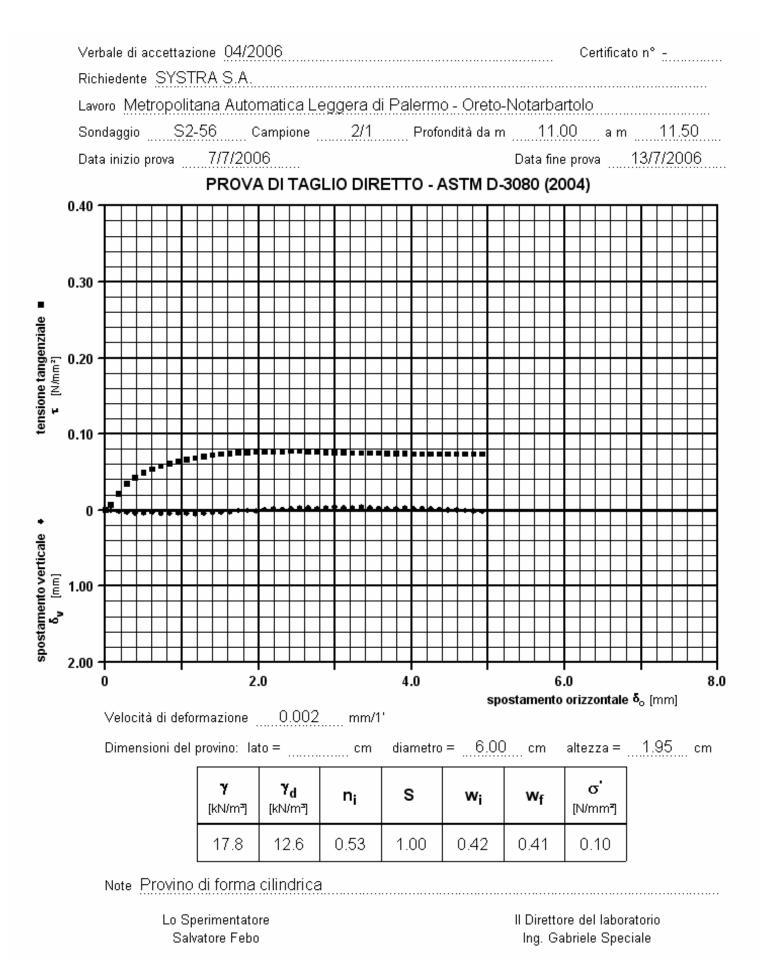
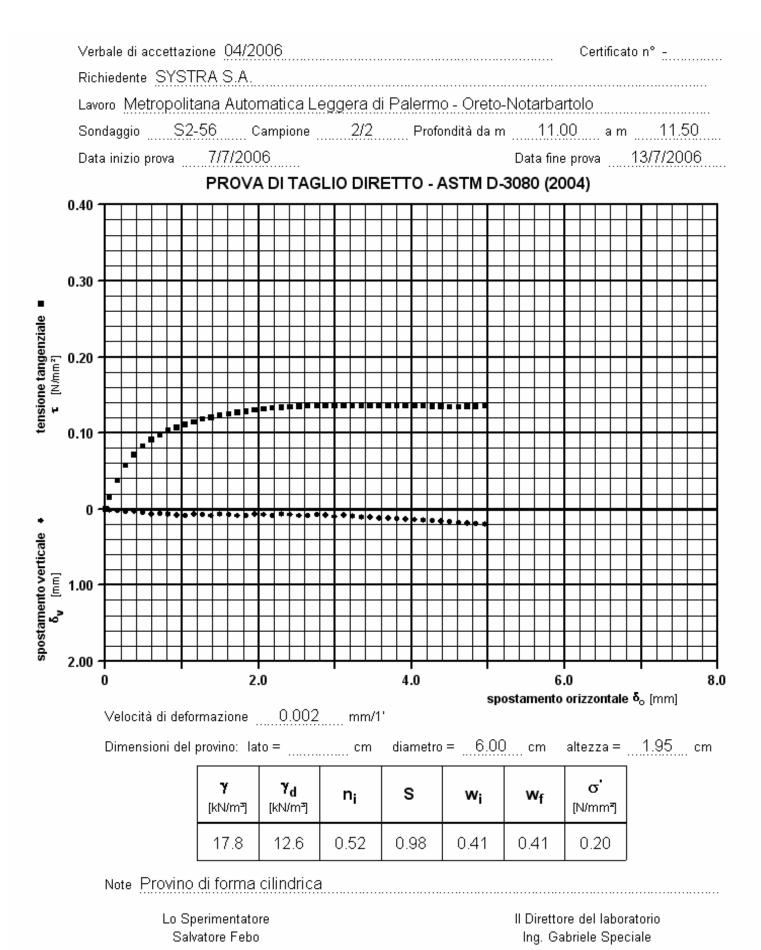

Sondaggio S2-56 Campione 2 Profondità da m 11,00 a m 11,50

diagramma log E_{ed} / log σ'

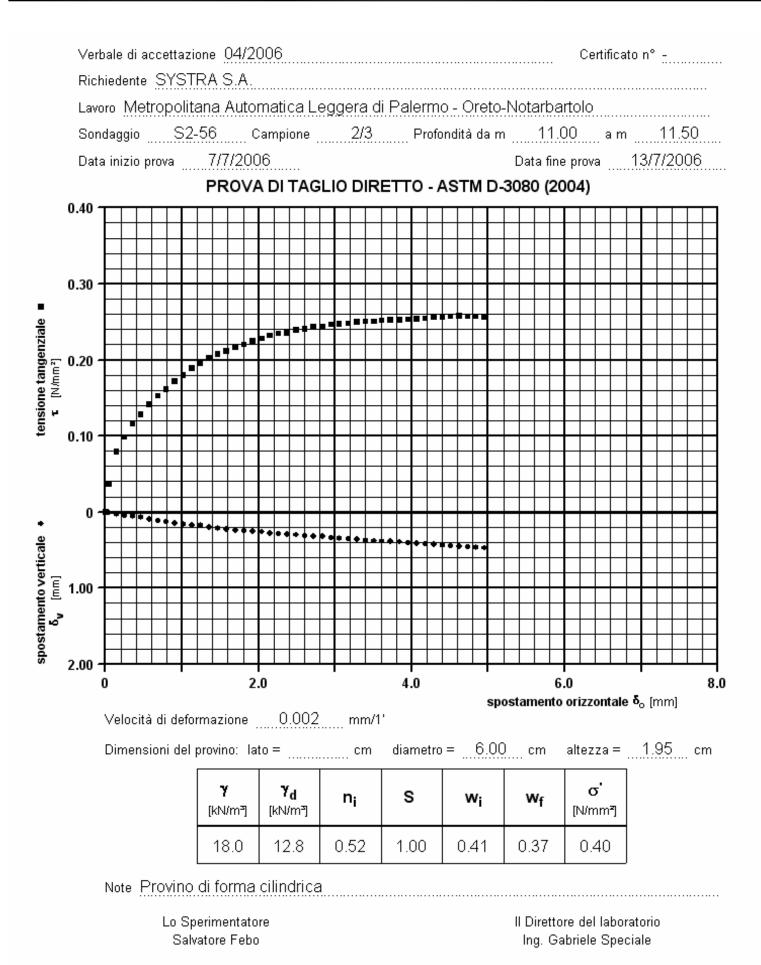
Lo Sperimentatore Salvatore Febo



Provino	y [kN/m³]	Υ _d [kN/m³]	'n	Ø	w _i	w _f	Ն_f [N/mm²]	σ˙ [N/mm²]	δ _{of} [mm]
1	17.8	12.6	0.53	1.00	0.42	0.41	0.077	0.10	2.38
2	17.8	12.6	0.52	0.98	0.41	0.41	0.137	0.20	3.42
3	18.0	12.8	0.52	1.00	0.41	0.37	0.259	0.40	4.54


Note Prova consolidata drenata

Lo Sperimentatore Salvatore Febo



Certificato n. -

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-56 Campione 2 Profondità da m 11,00 a m 11,50

RISULTATI DELLA PROVA DI TAGLIO DIRETTO - ASTM D-3080 (2004)

Data inizio prova 7/7/2006

Data fine prova 13/7/2006

						<u> </u>		
Provino	1			2			3	
σ' [N/mm²	0.1			0.2			0.4	
δ _o [mm]	τ [N/mm ²]	δ_v [mm]	δ_{o} [mm]	τ [N/mm ²]	δ_v [mm]	δ_{o} [mm]	τ [N/mm ²]	δ_v [mm]
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.066	0.007	0.007	0.047	0.015	0.010	0.041	0.037	0.002
0.169	0.022	0.015	0.150	0.038	0.015	0.138	0.080	0.021
0.279	0.035	0.029	0.259	0.058	0.030	0.242	0.099	0.041
0.386	0.043	0.036	0.370	0.072	0.027	0.350	0.117	0.053
0.499	0.049	0.039	0.483	0.083	0.044	0.457	0.129	0.062
0.609	0.054	0.032	0.594	0.091	0.062	0.568	0.142	0.088
0.721	0.058	0.044	0.705	0.098	0.054	0.679	0.153	0.107
0.831	0.061	0.046	0.816	0.103	0.062	0.790	0.162	0.124
0.944	0.064	0.036	0.929	0.108	0.079	0.901	0.172	0.141
1.056	0.067	0.044	1.040	0.112	0.082	1.013	0.180	0.155
1.169	0.069	0.049	1.153	0.115	0.067	1.124	0.190	0.167
1.281	0.071	0.044	1.264	0.119	0.069	1.237	0.196	0.172
1.394	0.072	0.029	1.375	0.121	0.082	1.351	0.203	0.196
1.506	0.074	0.032	1.489	0.123	0.064	1.462	0.208	0.208
1.621	0.075	0.022	1.605	0.125	0.069	1.576	0.212	0.220
1.734	0.076	0.005	1.718	0.127	0.082	1.692	0.218	0.232
1.849	0.076	0.005	1.831	0.129	0.082	1.808	0.220	0.243
1.964	0.077	0.010	1.947	0.131	0.064	1.919	0.225	0.251
2.076	0.077	-0.007	2.063	0.132	0.069	2.035	0.229	0.253
2.191	0.077	-0.017	2.176	0.133	0.082	2.144	0.233	0.272
2.308	0.077	-0.010	2.295	0.134	0.064	2.257	0.235	0.284
2.421	0.077	-0.015	2.408	0.135	0.069	2.371	0.236	0.291
2.533	0.077	-0.032	2.524	0.135	0.082	2.484	0.240	0.298
2.648	0.077	-0.029	2.642	0.136	0.082	2.600	0.241	0.308
2.763	0.076	-0.022	2.758	0.136	0.069	2.714	0.244	0.313
2.878	0.076	-0.032	2.874	0.137	0.074	2.828	0.244	0.313
2.993	0.076	-0.039	2.990	0.137	0.094	2.941	0.247	0.332
3.108	0.076	-0.029	3.108	0.137	0.079	3.052	0.248	0.339
3.223	0.075	-0.029	3.224	0.137	0.089	3.166	0.248	0.346
3.338	0.075	-0.039	3.342	0.137	0.106	3.279	0.250	0.356
3.453	0.075	-0.032	3.456	0.137	0.106	3.393	0.251	0.365
3.568	0.075	-0.024	3.574	0.137	0.114	3.507	0.251	0.372
3.680	0.075	-0.024	3.690	0.137	0.119	3.608	0.253	0.379
3.795	0.075	-0.024	3.803	0.136	0.126	3.719	0.253	0.382
3.908	0.074	-0.027	3.919	0.136	0.128	3.835	0.253	0.389
4.020	0.074	-0.022	4.035	0.136	0.138	3.947	0.254	0.399
4.135	0.074	-0.022	4.148	0.136	0.143	4.063	0.255	0.406
4.247	0.074	-0.017	4.264	0.135	0.151	4.174	0.255	0.413

Lo Sperimentatore

Il Direttore del Laboratorio

Salvatore Febo

Certificato n. -

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-56 Campione 2 Profondità da m 11,00 a m 11,50

RISULTATI DELLA PROVA DI TAGLIO DIRETTO - ASTM D-3080 (2004)

Data inizio prova 7/7/2006

Data fine prova 13/7/2006

Provino 1 2	a fine prova 13/7/2006			
	3			
$\sigma' [N/mm^2] = 0.1$	0.4			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Lo Sperimentatore Salvatore Febo

Certificato n. -

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-56 Campione 3 Profondità da m 17.50 a m 18.00

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo 22/6/2006

Data di arrivo in laboratorio 4/7/2006

Data di apertura 7/7/2006

Contenitore Fustella metallica

Dimensioni l = 40 cm

Condizioni campione

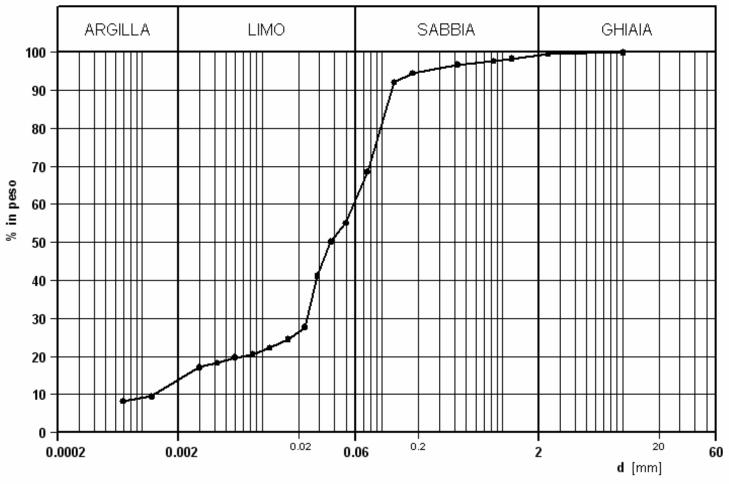
Prove eseguite γ , γ_s , G, w, CE, TD (CD)

Rp [N/mm²] Descrizione

(Normativa ASTM D2487/00 – ASTM D2488/00)

Sabbia limosa di colore grigio, mediamente addensata, fossilifera.

Lo Sperimentatore


Salvatore Febo

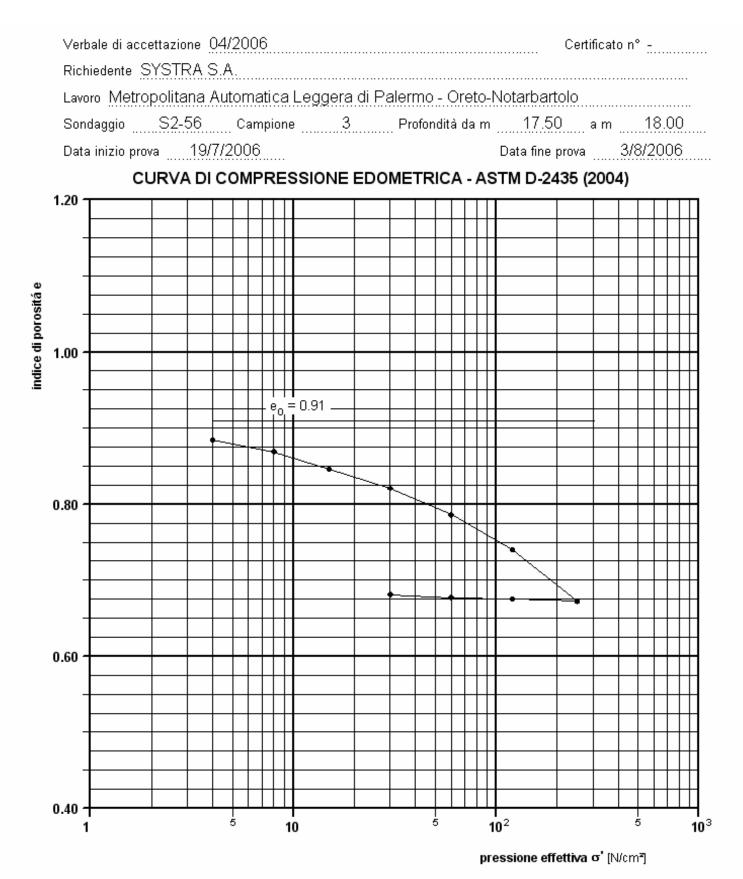
Il Direttore del Laboratorio

Verbale di acc	ettazione <u>04</u>	/2006			Сег	tificato n°	-
Richiedente S	SYSTRA S.	A					
Lavoro Metro	politana Au	itomatica Le	ggera di F	alermo - Oreto-l	Votarbartolo		
Sondaggio	S2-56	Campione	3	Profondità da m	17.50	a m	18.00
Data inizio pro	va 13/7/:	2006			Data fine prova	a 18/1	7/2006

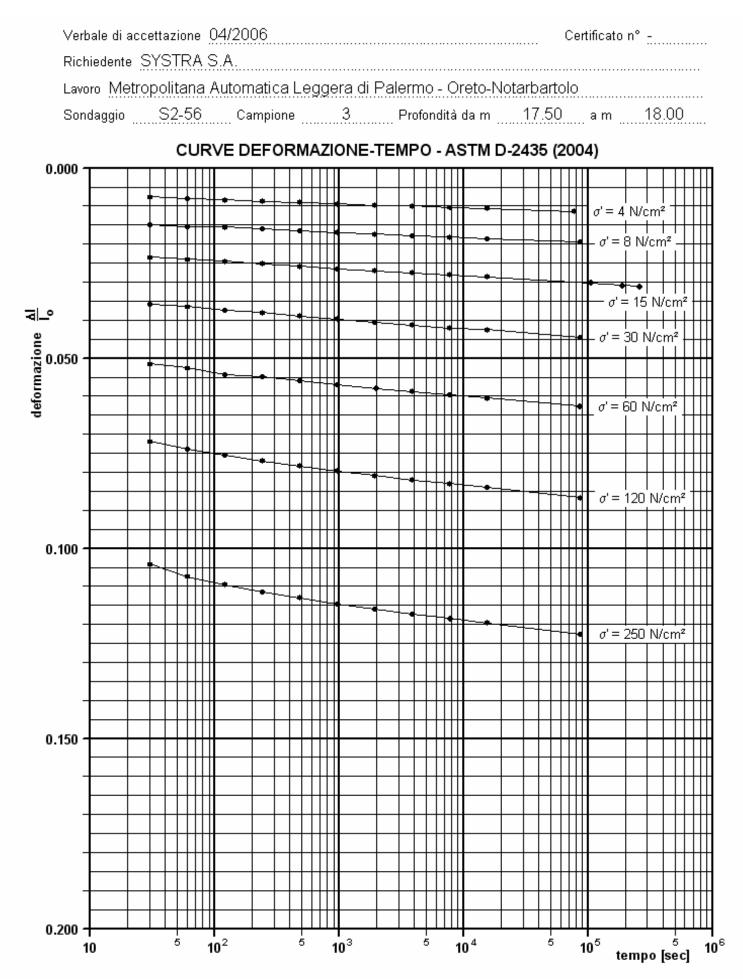
ANALISI GRANULOMETRICA - ASTM D-422 (2002)

Composizione granulometrica Limo con sabbia argillosa

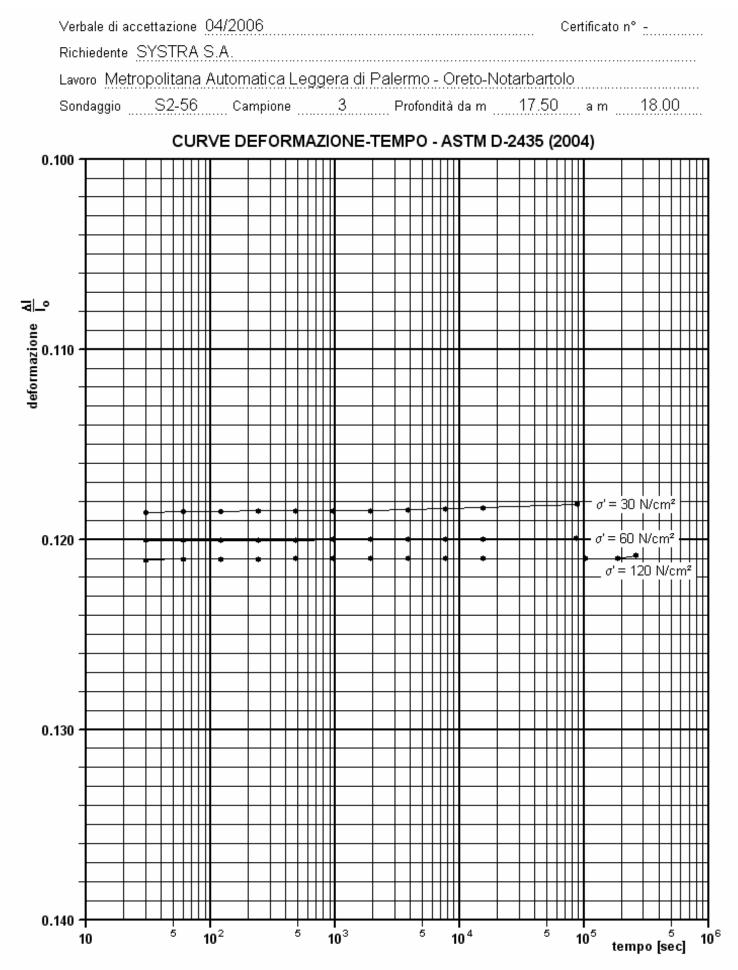
$$U = \frac{d_{60}}{d_{10}} = \frac{d_{60}}{d_{10}} = \frac{14}{d_{10}}$$


Note _____

Lo Sperimentatore Salvatore Febo



0.440000									
Verbale di accettazione 04/2006 Certificato n° - Richiedente SYSTRA S.A.									
Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo									
Sondaggio S2-56 Campione 3 Profondità da m 17.50 a m 18.00									
Data inizio prova 19/7/2006 Data fine prova 3/8/2006									
PROVA DI COMPRESSIONE EDOMETRICA - ASTM D-2435 (2004)									
Dimensioni del p	rovino:	diar	netro d = s	50 mm		altezza	I _o = 20 mr	m	
		Carat	teristiche	e iniziali					
Peso	dell'unitá d	i volume		γ	=	18.5	kN/m³		
Peso	secco dell'	unitá di vo	lume	γ	d =	13.8	kN/m³		
Peso	specifico			γ	s =	26.4	kN/m³		
Conte	nuto d'acqi	ја		w = 0.34					
Indice	di porositá	i		e _o =0.91					
Grado	di saturaz	ione		S = 0.98					
		Risulta	ati della i	prova					
Peso	dell'unitá d		,		f =	15.3	kN/m³		
, 555	3011 311114 3				·	!	101 471111		
Conte	nuto d'acqu	ua finale		W	f =!	0.29			
Pressione σ' [N/cm²]	4.0	8.0	15.0	30.0	60.0	120.0	250.0		
Indice di carico	0.884	0.869	0.846	0.821	0.786	0.740	0.672		
e scarico				0.681	0.677	0.675			
Note									



E-mail: info@laboratoriometro.it

Rif. verbale di accettazione: 04/2006 Certificato n. -

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-56 Campione 3 Profondità da m 17.50 a m 18.00

PROVA DI COMPRESSIONE EDOMETRICA GRANDEZZE CARATTERISTICHE

σ ′ [N/cm²]	Eed [N/cm ²]	m _V [cm ² /N]	c _v [cm ² /sec]	k [cm/sec]
4.0 ÷ 8.0	494	2.0×10^{-3}		
7.5 ÷ 15.0	582	1.7×10^{-3}		
15.0 ÷ 30.0	1085	9.2×10^{-4}		
30.0 ÷ 60.0	1588	6.3×10^{-4}		
60.0 ÷ 120.0	2334	4.3×10^{-4}		
120.0 ÷ 250.0	3312	3.0×10^{-4}		

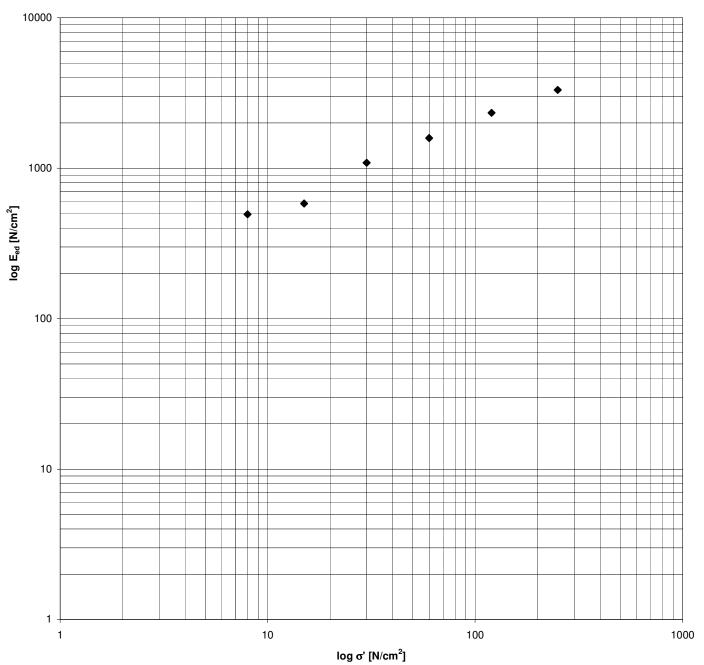
note

Lo Sperimentatore

Il Direttore del Laboratorio

Salvatore Febo

Verbale di accettazione 04/2006


Certificato n. -

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

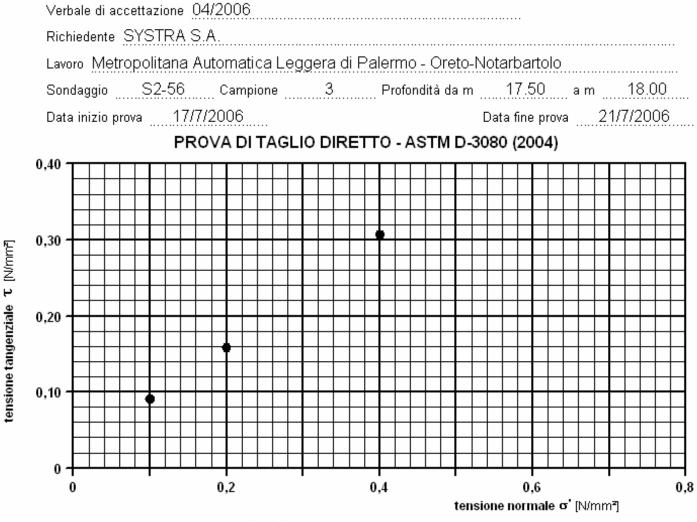
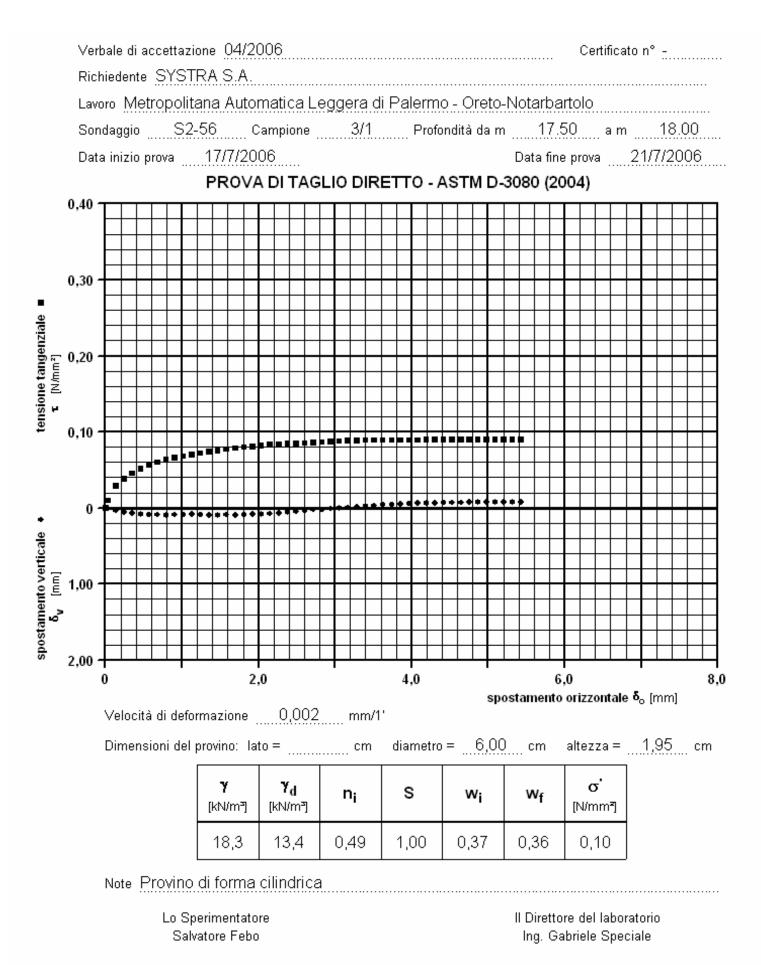
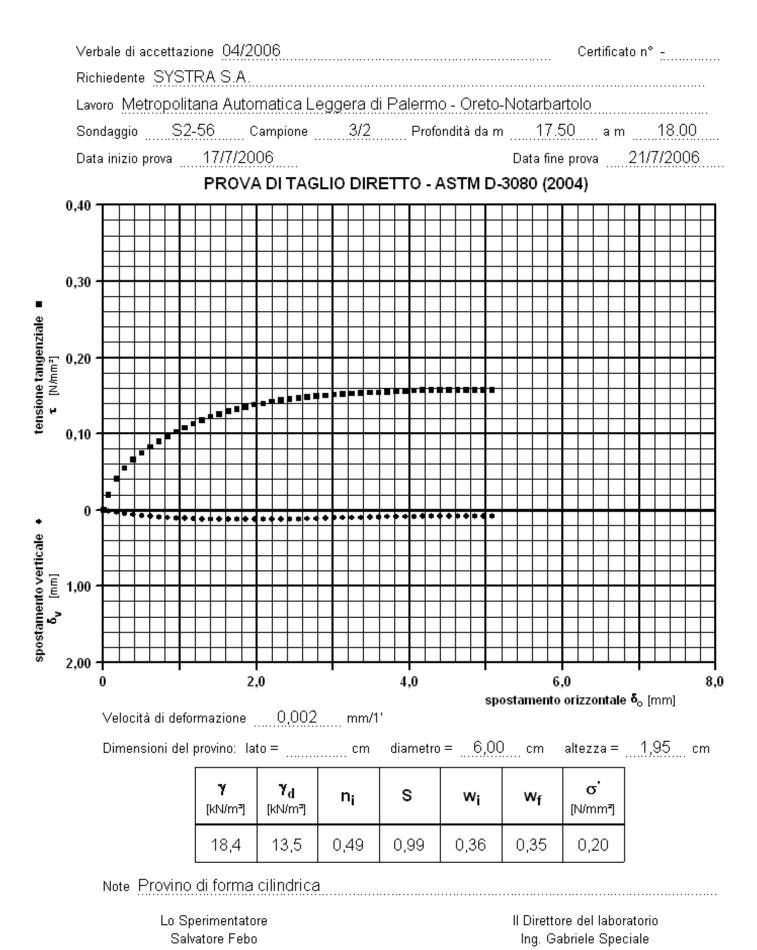

Sondaggio S2-56 Campione 3 Profondità da m 17,50 a m 18,00

diagramma log E_{ed} / log σ'

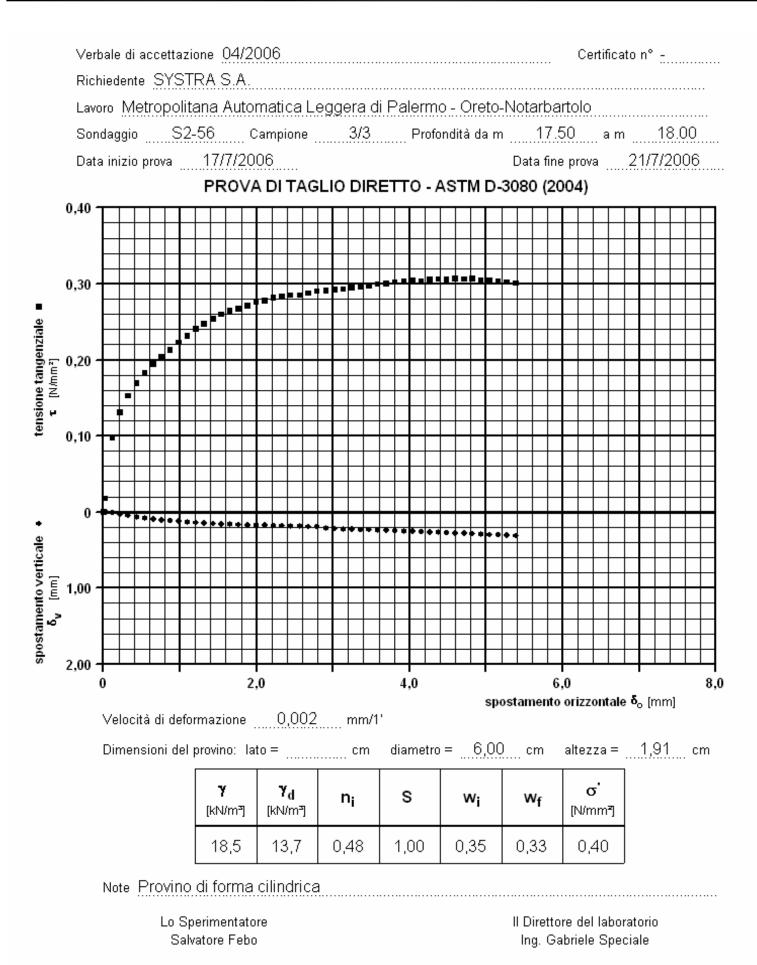
Lo Sperimentatore Salvatore Febo


Velocità di deformazione	0,002	mm/1'
--------------------------	-------	-------

Provino	y [kN/m³]	Υ _d [kN/m³]	ni	Ø	w _i	w _f	τ _f [N/mm²]	σ' [N/mm²]	δ _{of} [mm]
1	18,3	13,4	0,49	1,00	0,37	0,36	0,091	0,10	4,49
2	18,4	13,5	0,49	0,99	0,36	0,35	0,158	0,20	4,24
3	18,5	13,7	0,48	1,00	0,35	0,33	0,307	0,40	4,56


Note Prova consolidata drenata

Lo Sperimentatore Salvatore Febo



Certificato n. -

Rif. verbale di accettazione 04/2006

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-56 Campione 3 Profondità da m 17,50 a m 18,00

RISULTATI DELLA PROVA DI TAGLIO DIRETTO - ASTM D-3080 (2004)

Data inizio prova 17/7/2006

Data fine prova 21/7/2006

Provino	1			2		3			
σ' [N/mm²	²] 0.1			0.2			0.4		
_									
$\delta_{\rm o}$ [mm]	$\tau \; [\text{N/mm}^2]$	δ_v [mm]	δ_{o} [mm]	τ [N/mm ²]	δ_v [mm]	δ_{o} [mm]	$\tau [N/mm^2]$	δ_v [mm]	
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
0.029	0.010	0.007	0.057	0.020	0.012	0.019	0.018	0.000	
0.130	0.029	0.029	0.165	0.041	0.027	0.111	0.098	0.007	
0.235	0.039	0.049	0.274	0.055	0.044	0.215	0.132	0.026	
0.345	0.046	0.066	0.384	0.066	0.057	0.319	0.153	0.045	
0.455	0.052	0.075	0.495	0.075	0.069	0.428	0.169	0.062	
0.565	0.056	0.083	0.609	0.083	0.079	0.537	0.184	0.076	
0.677	0.060	0.085	0.720	0.090	0.089	0.648	0.195	0.091	
0.790	0.064	0.087	0.833	0.097	0.094	0.756	0.204	0.100	
0.902	0.067	0.085	0.944	0.103	0.101	0.868	0.213	0.110	
1.015	0.068	0.085	1.060	0.108	0.106	0.979	0.223	0.115	
1.127	0.070	0.080	1.171	0.113	0.111	1.092	0.232	0.127	
1.240	0.072	0.085	1.282	0.118	0.114	1.201	0.241	0.134	
1.352	0.074	0.087	1.397	0.123	0.116	1.312	0.248	0.143	
1.465	0.076	0.087	1.511	0.126	0.116	1.426	0.254	0.148	
1.577	0.077	0.085	1.624	0.130	0.119	1.537	0.260	0.153	
1.690	0.079	0.087	1.740	0.133	0.116	1.648	0.265	0.158	
1.805	0.080	0.085	1.853	0.135	0.119	1.762	0.267	0.165	
1.917	0.081	0.078	1.969	0.138	0.119	1.878	0.272	0.167	
2.030	0.082	0.075	2.083	0.140	0.116	1.989	0.276	0.172	
2.144	0.083	0.068	2.196	0.143	0.119	2.105	0.278	0.172	
2.262	0.085	0.061	2.314	0.144	0.116	2.216	0.282	0.177	
2.372	0.085	0.051	2.430	0.146	0.116	2.330	0.284	0.177	
2.484	0.085	0.041	2.546	0.147	0.114	2.443	0.285	0.181	
2.599	0.086	0.033	2.662	0.149	0.111	2.557	0.285	0.184	
2.712	0.087	0.017	2.778	0.150	0.109	2.670	0.288	0.189	
2.827	0.087	0.017	2.894	0.151	0.104	2.786	0.291	0.191	
2.939	0.088	0.007	3.012	0.152	0.099	2.905	0.291	0.212	
3.052	0.088	0.000	3.125	0.152	0.099	3.016	0.292	0.215	
3.164	0.089	-0.010	3.244	0.153	0.096	3.127	0.294	0.220	
3.282	0.089	-0.017	3.359	0.154	0.094	3.241	0.295	0.224	
3.394	0.089	-0.029	3.478	0.154	0.091	3.354	0.296	0.227	
3.506	0.090	-0.034	3.591	0.155	0.089	3.466	0.297	0.229	
3.621	0.089	-0.046	3.707	0.155	0.086	3.579	0.300	0.232	
3.736	0.089	-0.051	3.823	0.156	0.084	3.693	0.300	0.239	
3.849	0.089	-0.056	3.939	0.156	0.084	3.806	0.303	0.241	
3.961	0.089	-0.061	4.054	0.157	0.082	3.920	0.303	0.246	
4.076	0.090	-0.066	4.168	0.157	0.079	4.033	0.304	0.248	
4.189	0.090	-0.068	4.281	0.158	0.079	4.145	0.304	0.255	

Lo Sperimentatore

Salvatore Febo

Il Direttore del Laboratorio

Rif. verbale di accettazione 04/2006

Certificato n. -

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-56 Campione 3

Profondità da m 17,50 a m 18,00

RISULTATI DELLA PROVA DI TAGLIO DIRETTO - ASTM D-3080 (2004)

Data inizio prova 17/7/2006

Data fine prova 21/7/2006

Provino 1	Data IIIIZIO prova 17/7/2006	Data line prova 21/7/2006				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Provino 1	2	3			
4.301 0.090 -0.070 4.395 0.158 0.079 4.261 0.306 0.263 4.414 0.090 -0.073 4.510 0.157 0.074 4.372 0.306 0.265 4.526 0.090 -0.075 4.624 0.157 0.077 4.481 0.306 0.270 4.641 0.090 -0.078 4.735 0.157 0.074 4.594 0.307 0.275 4.751 0.090 -0.080 4.848 0.157 0.074 4.708 0.306 0.277 4.864 0.090 -0.080 4.961 0.157 0.074 4.819 0.307 0.284 4.976 0.090 -0.083 5.072 0.158 0.077 4.930 0.305 0.289 5.084 0.090 -0.083 5.044 0.305 0.294 5.199 0.090 -0.083 5.155 0.304 0.296 5.311 0.090 -0.083 5.268 0.302 0.303	σ' [N/mm²] 0.1	0.2	0.4			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			

Lo Sperimentatore Salvatore Febo

Il Direttore del Laboratorio

Rif. verbale di accettazione 04/2006

Certificato n. -

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-56 Campione 4 Profondità da m 21.00 a m 21.40

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo 22/6/2006

Data di arrivo in laboratorio 4/7/2006

Data di apertura 14/7/2006

Contenitore Fustella di plastica

Dimensioni 1 = 32 cm

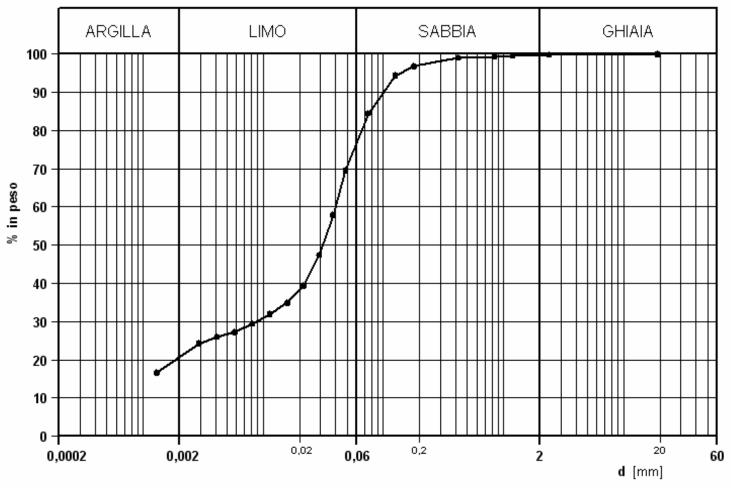
Condizioni campione Buone

Prove eseguite γ , γ_s , G, w, TD (CD)

Rp [N/mm²] Descrizione

(Normativa ASTM D2487/00 – ASTM D2488/00)

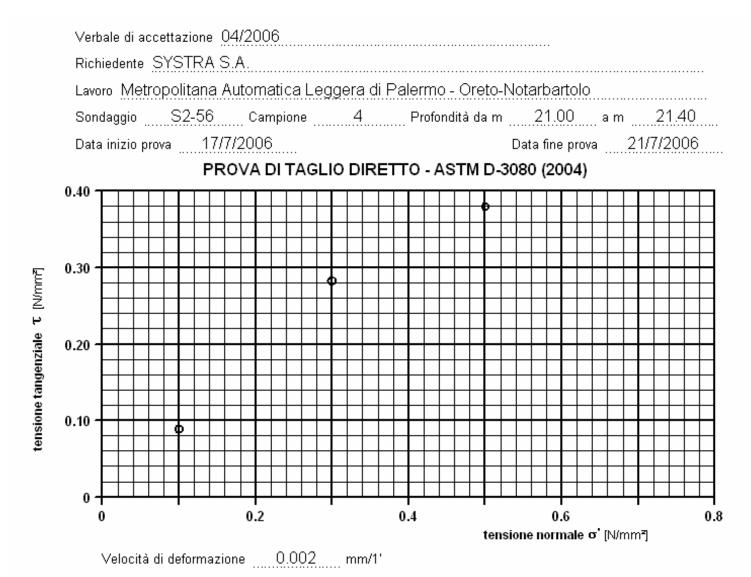
Limo sabbioso di colore grigio, poco consistente, $w_n > w_p$, con frammenti di fossili.


Lo Sperimentatore

Salvatore Febo Ing. Gabriele Speciale

Modulo 9.29A - Rev. 1 del 06/06/05

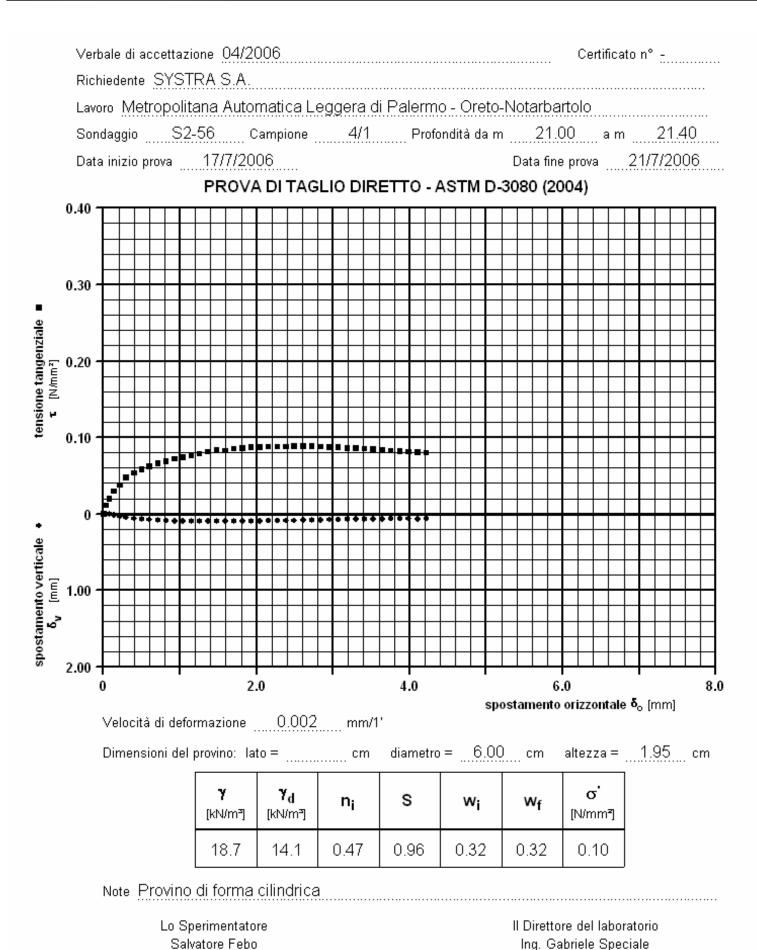
Verbale di accet	tazione 04	/2006			Cer	rtificato n°	-			
Richiedente SY	Richiedente SYSTRA S.A.									
Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo										
Sondaggio	S2-56	Campione	4	Profondità da m	21.00	am	21.40			
Data inizio prova	a 18/7/2	2006			Data fine prova	a 21/3	7/2006			


Composizione granulometrica Limo sabbioso argilloso

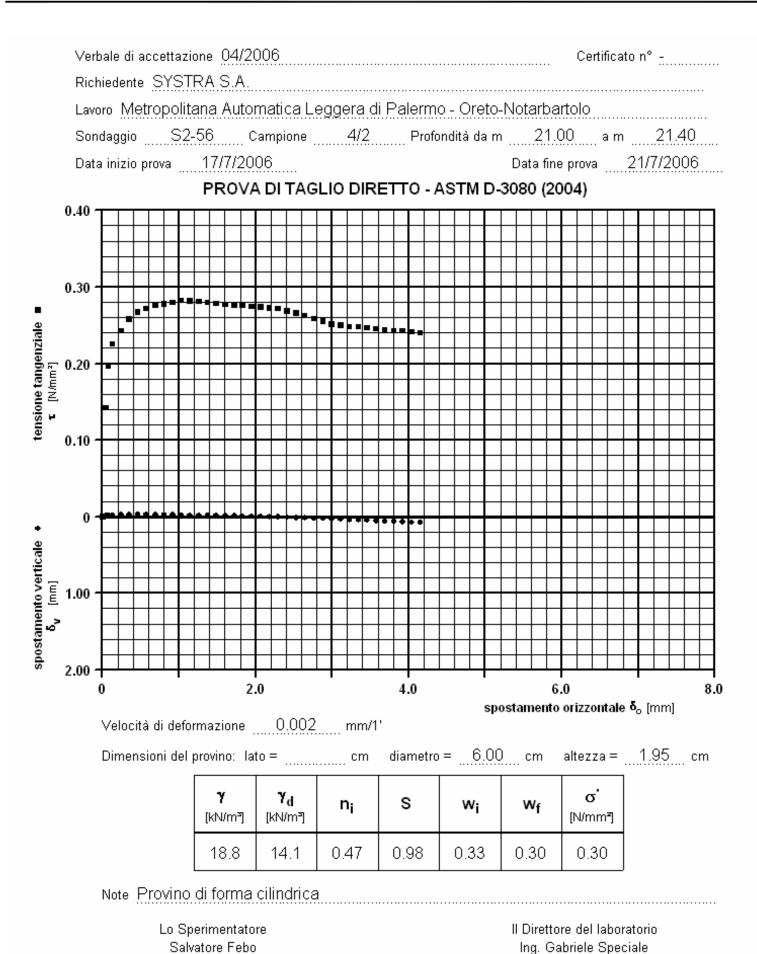
$$U = \frac{d_{60}}{d_{10}} = \frac{d_{60}}{d_{10}} = \frac{20}{d_{10}}$$

Note _____

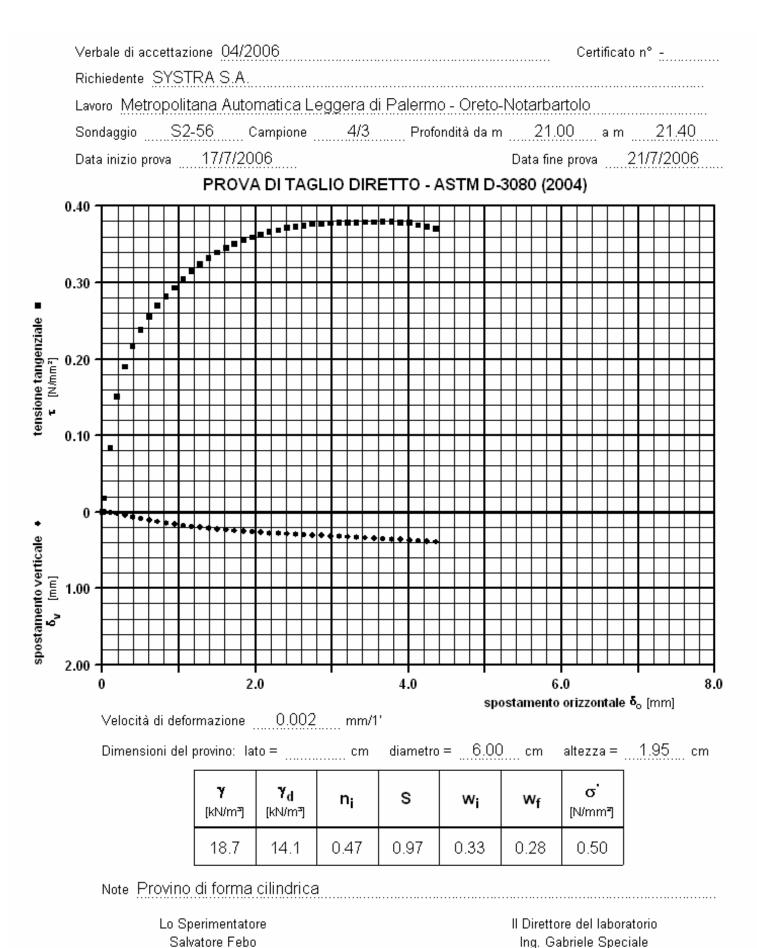
Lo Sperimentatore Salvatore Febo



Provino	y [kN/m³]	Υ _d [kN/m³]	n _i	s	w _i	w _f	ፒ _f [N/mm²]	σ' [N/mm²]	δ _{of} [mm]
1	18.7	14.1	0.47	0.96	0.32	0.32	0.089	0.10	2.53
2	18.8	14.1	0.47	0.98	0.33	0.30	0.283	0.30	1.03
3	18.7	14.1	0.47	0.97	0.33	0.28	0.380	0.50	3.58


Note Prova consolidata drenata

Lo Sperimentatore Salvatore Febo



E-mail: info@laboratoriometro.it

Certificato n. -

Rif. verbale di accettazione 04/2006

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-56

Campione 4

Profondità da m 21,00 a m 21,40

RISULTATI DELLA PROVA DI TAGLIO DIRETTO - ASTM D-3080 (2004)

Data inizio prova 17/7/2006

Data fine prova 21/7/2006

Data iliizio piova	17/1/2000				Data lille prova 21/7/2000			
Provino 1			2			3		
σ' [N/mm ²] 0.1			0.3			0.5		
δ_{o} [mm] τ [N/m	m^2] δ_v [mm]	δ_{o} [mm]	τ [N/mm ²]	δ_v [mm]	δ _o [mm]	τ [N/mm ²]	δ_v [mm]	
0.000 0.00	_	0.000	0.000	0.000	0.000	0.000	0.000	
0.030 0.01		0.002	0.001	0.005	0.022	0.018	0.000	
0.071 0.02		0.025	0.001	0.007	0.099	0.084	0.002	
0.131 0.03		0.041	0.142	-0.019	0.188	0.151	0.017	
0.210 0.03		0.074	0.197	-0.021	0.289	0.190	0.039	
0.295 0.04		0.129	0.226	-0.025	0.393	0.217	0.066	
0.394 0.05		0.238	0.243	-0.027	0.499	0.238	0.086	
0.495 0.05		0.347	0.258	-0.032	0.608	0.256	0.106	
0.599 0.06		0.458	0.267	-0.037	0.716	0.270	0.125	
0.707 0.06	6 0.079	0.572	0.272	-0.035	0.825	0.282	0.142	
0.814 0.06	9 0.084	0.686	0.276	-0.030	0.936	0.294	0.157	
0.923 0.07	2 0.087	0.799	0.278	-0.027	1.049	0.305	0.174	
1.032 0.07	5 0.087	0.911	0.280	-0.027	1.160	0.315	0.187	
1.142 0.07	7 0.089	1.027	0.283	-0.025	1.271	0.325	0.199	
1.253 0.07	9 0.087	1.141	0.282	-0.025	1.384	0.333	0.211	
1.365 0.08	2 0.089	1.255	0.282	-0.022	1.495	0.340	0.221	
1.476 0.08	3 0.087	1.371	0.280	-0.022	1.611	0.345	0.228	
1.588 0.08	3 0.087	1.485	0.279	-0.020	1.722	0.351	0.240	
1.700 0.08	6 0.087	1.601	0.277	-0.017	1.836	0.356	0.248	
1.812 0.08	6 0.087	1.718	0.277	-0.015	1.951	0.359	0.255	
1.927 0.08		1.829	0.276	-0.012	2.065	0.364	0.265	
2.040 0.08		1.945	0.275	-0.007	2.178	0.366	0.272	
2.150 0.08		2.062	0.274	-0.007	2.294	0.369	0.277	
2.266 0.08		2.176	0.273	-0.002	2.405	0.372	0.282	
2.380 0.08		2.292	0.272	0.000	2.518	0.374	0.290	
2.490 0.08		2.408	0.269	0.005	2.629	0.375	0.294	
2.604 0.08		2.524	0.266	0.010	2.742	0.377	0.299	
2.718 0.08		2.641	0.263	0.012	2.858	0.377	0.304	
2.832 0.08		2.757	0.259	0.015	2.974	0.378	0.312	
2.948 0.08		2.876	0.255	0.020	3.087	0.379	0.317	
3.064 0.08		2.992	0.252	0.022	3.201	0.379	0.321	
3.179 0.08		3.109	0.250	0.030	3.316	0.379	0.329	
3.295 0.08		3.222	0.249	0.035	3.430	0.380	0.334	
3.407 0.08		3.339	0.248	0.040	3.546	0.380	0.341	
3.522 0.08		3.453	0.247	0.045	3.661	0.380	0.348	
3.637 0.08		3.569	0.245	0.050	3.777	0.380	0.353	
3.752 0.08		3.685	0.244	0.055	3.891	0.379	0.358	
3.868 0.08		3.802	0.243	0.057	4.006	0.378	0.366	
3.984 0.08	2 0.059	3.918	0.243	0.062	4.122	0.375	0.373	

Lo Sperimentatore

Salvatore Febo

Il Direttore del Laboratorio

E-mail: info@laboratoriometro.it

Rif. verbale di accettazione 04/2006

Certificato n. -

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-56

Campione 4

Profondità da m 21,00 a m 21,40

RISULTATI DELLA PROVA DI TAGLIO DIRETTO - ASTM D-3080 (2004)

Data inizio prova 17/7/2006

Data fine prova 21/7/2006

Data iiiizio piova 17/7/2006		Data lille piova 21/1/2006				
Provino 1	2	3				
σ' [N/mm²] 0.1	0.3	0.5				
$\delta_{o} \ [mm] _{\tau} \ [N/mm^{2}] \delta_{v} \ [mm] \\ 4.099 0.081 0.062 \\ 4.216 0.081 0.059$	δ_{o} [mm] $_{\tau}$ [N/mm ²] δ_{v} [mm] 4.032 0.242 0.070 4.148 0.240 0.070	$\delta_{o} \ [mm] _{\tau} \ [N/mm^{2}] \delta_{v} \ [mm] \\ 4.235 \qquad 0.373 \qquad 0.380 \\ 4.351 \qquad 0.371 \qquad 0.385$				

Lo Sperimentatore Salvatore Febo

Rif. verbale di accettazione 04/2006 Certificato n. -

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-56 Campione 5 Profondità da m 23.30 a m 23.70

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo 22/6/2006

Data di arrivo in laboratorio 4/7/2006

Data di apertura 14/7/2006

Contenitore Fustella di plastica

Dimensioni 1 = 32 cm

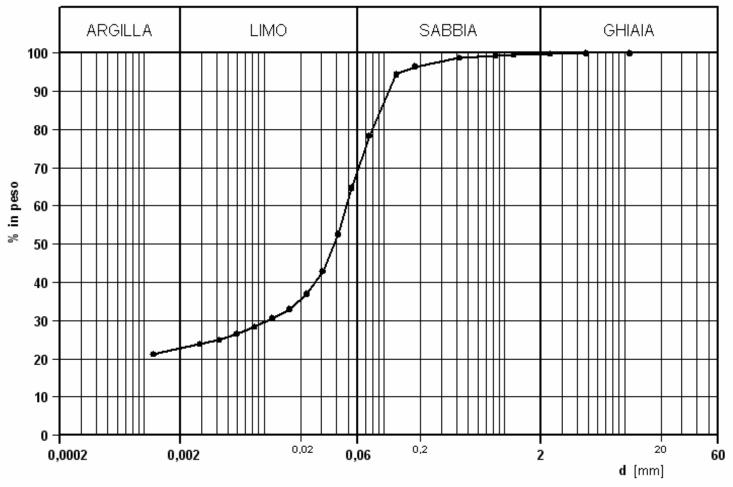
Condizioni campione Buone

Prove eseguite γ_s , G, w

Rp [N/mm²] Descrizione

(Normativa ASTM D2487/00 - ASTM D2488/00)

Sabbia limosa di colore grigio, mediamente addensata, fossilifera.


Lo Sperimentatore

Salvatore Febo

Il Direttore del Laboratorio

Verbale di accettazione 04.	/2006			Се	rtificato n°	-			
Richiedente SYSTRA S.A.									
Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo									
Sondaggio S2-56	Campione	5	Profondità da m	23.30	am	23.70			
Data inizio prova 18/7/2	2006			Data fine prov	a 21/	7/2006			

Composizione granulometrica Limo con sabbia argilloso

$$U = \frac{d_{60}}{d_{10}} = \frac{3}{2}$$
 % < d = 0,002 mm \quad 23

Note _____

Lo Sperimentatore Salvatore Febo

Rif. verbale di accettazione 04/2006 Certificato n. -

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

S2-57 Profondità da m 16.00 16.50 Sondaggio Campione a m

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo 3/7/2006

Data di arrivo in laboratorio 4/7/2006

7/7/2006 Data di apertura

Fustella di plastica Contenitore

Dimensioni 1 = 31 cm

Condizioni campione Discrete

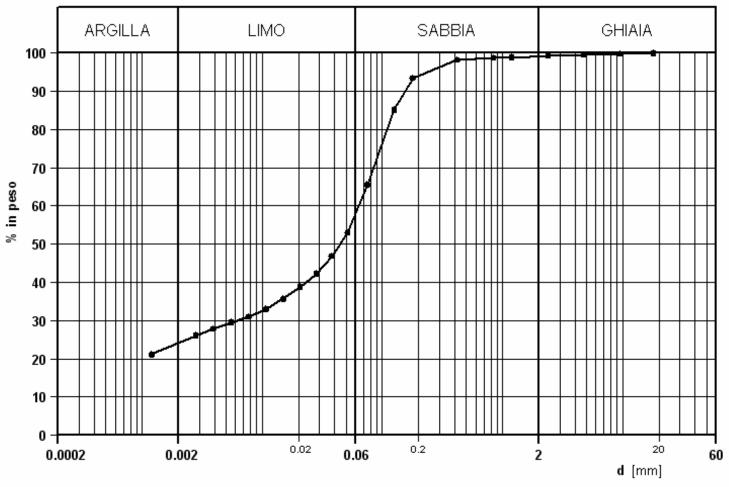
 γ , γ _s, G, w, TD (CD) Prove eseguite

Descrizione **Rp** [N/mm²]

(Normativa ASTM D2487/00 - ASTM D2488/00)

Limo sabbioso, a tratti sabbia limosa, di colore grigio, consistente, $w_n \ge w_p$,

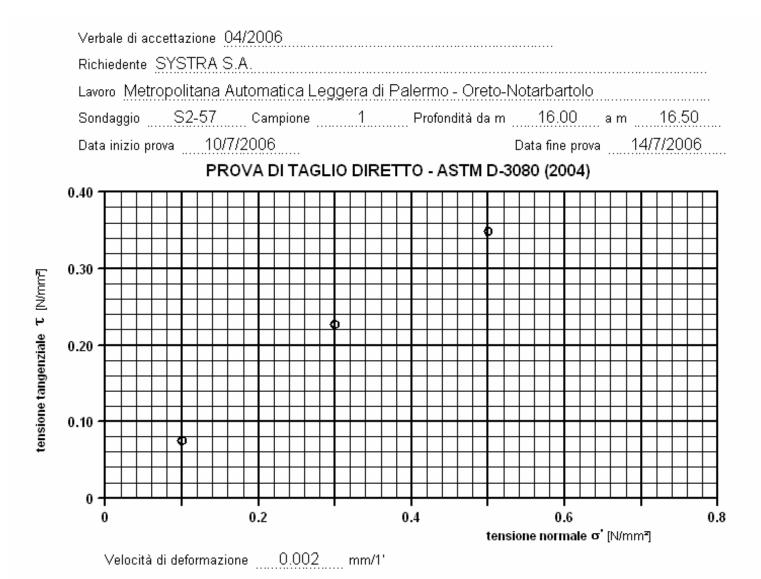
fossilifera.


Lo Sperimentatore

Salvatore Febo

Il Direttore del Laboratorio

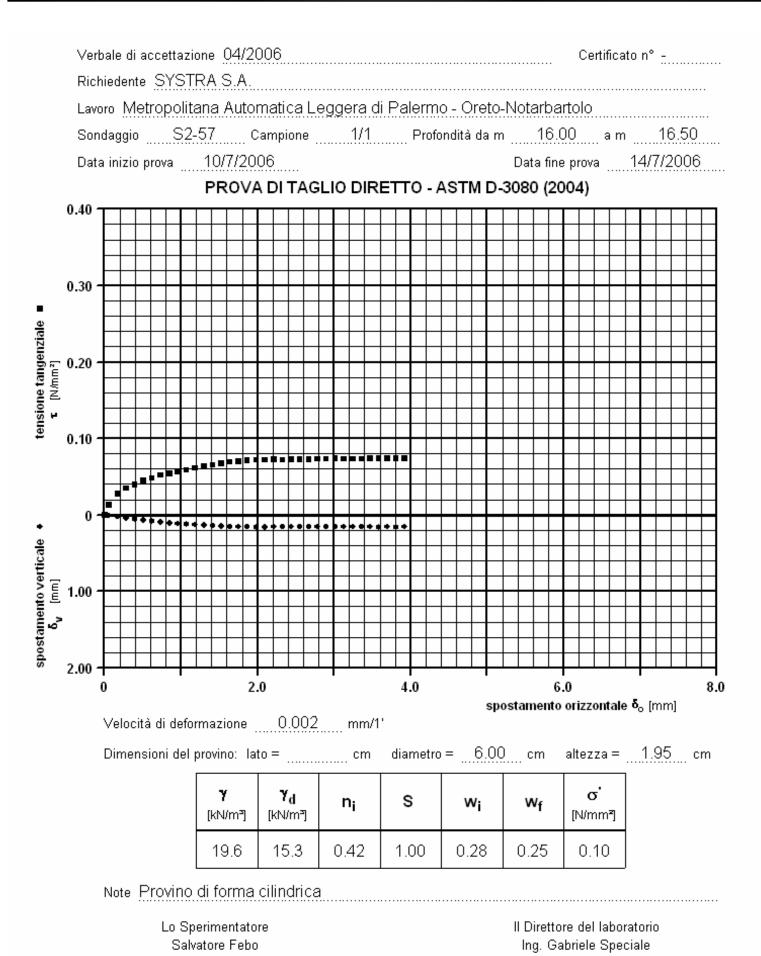
Verbale di accettazione 04/2006	Certificato n° -								
Richiedente SYSTRA S.A.									
Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo									
Sondaggio S2-57 Campione 1 Pro	ondità da m 16.00 a m 16.50								
Data inizio prova 11/7/2006	Data fine prova 14/7/2006								


Composizione granulometrica Sabbia con limo argillosa

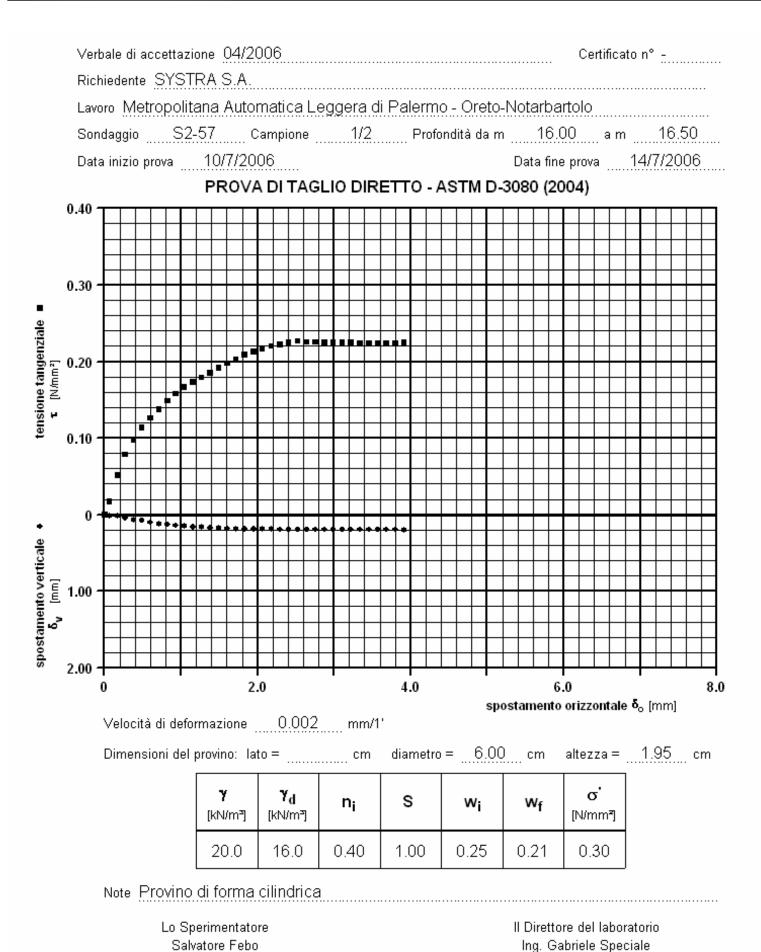
$$U = \frac{d_{60}}{d_{10}} = \frac{d_{60}}{d_{10}} = \frac{24}{d_{10}}$$

Note _____

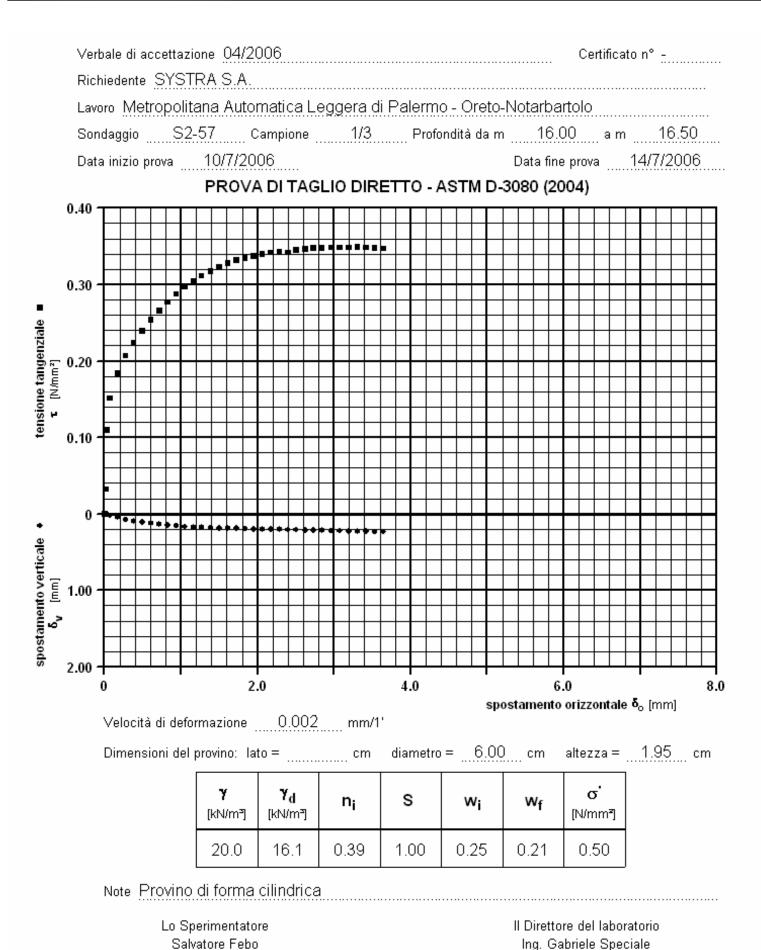
Lo Sperimentatore Salvatore Febo



Provino	y [kN/m³]	Υ _d [kN/m³]	ni	Ø	w _i	w _f	τ _f [N/mm²]	σ' [N/mm²]	δ _{of} [mm]
1	19.6	15.3	0.42	1.00	0.28	0.25	0.075	0.10	3.77
2	20.0	16.0	0.40	1.00	0.25	0.21	0.227	0.30	2.52
3	20.0	16.1	0.39	1.00	0.25	0.21	0.349	0.50	3.03


Note Prova consolidata drenata

Lo Sperimentatore Salvatore Febo



E-mail: info@laboratoriometro.it

Rif. verbale di accettazione 04/2006

Certificato n. -

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-57 Campione 1 Profondità da m 16,00 a m 16,50

RISULTATI DELLA PROVA DI TAGLIO DIRETTO - ASTM D-3080 (2004)

Data inizio prova 10/7/2006

Data fine prova 14/7/2006

Provino	1			2			3	
σ' [N/mm²]	0.1			0.3			0.5	
δ_{o} [mm]	τ [N/mm ²]	δ_v [mm]	δ _o [mm]	τ [N/mm ²]	δ_v [mm]	δ _o [mm]	τ [N/mm²]	δ_v [mm]
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.056	0.014	0.005	0.057	0.017	0.012	0.021	0.033	-0.007
0.166	0.028	0.017	0.163	0.052	0.012	0.036	0.110	0.007
0.276	0.035	0.034	0.266	0.079	0.035	0.065	0.152	0.017
0.389	0.040	0.051	0.377	0.098	0.064	0.167	0.184	0.038
0.501	0.045	0.063	0.486	0.114	0.069	0.273	0.207	0.072
0.614	0.049	0.080	0.594	0.127	0.099	0.379	0.225	0.088
0.729	0.052	0.090	0.705	0.138	0.114	0.488	0.239	0.103
0.844	0.054	0.100	0.818	0.149	0.124	0.602	0.254	0.117
0.954	0.057	0.109	0.927	0.158	0.136	0.711	0.266	0.131
1.066	0.059	0.117	1.040	0.167	0.143	0.822	0.278	0.143
1.179	0.062	0.124	1.151	0.173	0.153	0.933	0.288	0.150
1.294	0.064	0.131	1.262	0.179	0.158	1.044	0.297	0.162
1.406	0.066	0.138	1.373	0.185	0.166	1.155	0.305	0.169
1.519	0.068	0.141	1.489	0.192	0.166	1.266	0.312	0.172
1.633	0.070	0.148	1.602	0.198	0.178	1.380	0.318	0.177
1.746	0.071	0.148	1.713	0.203	0.180	1.494	0.324	0.181
1.861	0.071	0.148	1.829	0.209	0.183	1.605	0.328	0.184
1.976	0.073	0.153	1.942	0.213	0.183	1.721	0.332	0.186
2.091	0.073	0.153	2.060	0.217	0.185	1.832	0.335	0.189
2.206	0.073	0.148	2.176	0.220	0.185	1.943	0.338	0.193
2.321	0.073	0.148	2.290	0.223	0.188	2.057	0.341	0.193
2.433	0.073	0.148	2.403	0.225	0.188	2.170	0.342	0.196
2.548	0.073	0.148	2.519	0.227	0.190	2.281	0.343	0.196
2.663	0.073	0.148	2.637	0.226	0.188	2.398	0.342	0.203
2.778	0.074	0.151	2.753	0.226	0.188	2.504	0.346	0.203
2.893	0.074	0.148	2.869	0.225	0.190	2.617	0.347	0.208
3.008	0.074	0.148	2.985	0.225	0.188	2.728	0.348	0.210
3.123	0.074	0.148	3.101	0.225	0.188	2.840	0.348	0.212
3.238	0.074	0.151	3.216	0.225	0.190	2.956	0.349	0.215
3.352	0.074	0.148	3.335	0.225	0.188	3.072	0.349	0.217
3.467	0.074	0.148	3.451	0.224	0.188	3.185	0.349	0.220
3.580	0.075	0.153	3.568	0.224	0.188	3.299	0.349	0.222
3.692	0.075	0.148	3.680	0.224	0.188	3.412	0.349	0.224
3.805	0.074	0.153	3.796	0.225	0.188	3.526	0.348	0.227
3.917	0.074	0.148	3.907	0.225	0.195	3.640	0.347	0.229

Lo Sperimentatore

Salvatore Febo

Rif. verbale di accettazione 04/2006 Certificato n. -

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-57 Campione 2 Profondità da m 20.50 a m 21.00

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo 3/7/2006

Data di arrivo in laboratorio 4/7/2006

Data di apertura 12/7/2006

Contenitore Fustella metallica

Dimensioni 1 = 29 cm

Condizioni campione Discrete

Prove eseguite w

Rp [N/mm²] Descrizione

(Normativa ASTM D2487/00 – ASTM D2488/00)

Limo argilloso, a tratti sabbioso, di colore grigio, da poco consistente a molle,

 $w_n >> w_p$.

Lo Sperimentatore

Salvatore Febo

Il Direttore del Laboratorio

Il Direttore del Laboratorio

Rif. verbale di accettazione 04/2006 Certificato n. -

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-57 Campione 3 Profondità da m 23.60 a m 24.00

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo 3/7/2006

Data di arrivo in laboratorio 4/7/2006

Data di apertura 13/7/2006

Contenitore Fustella metallica

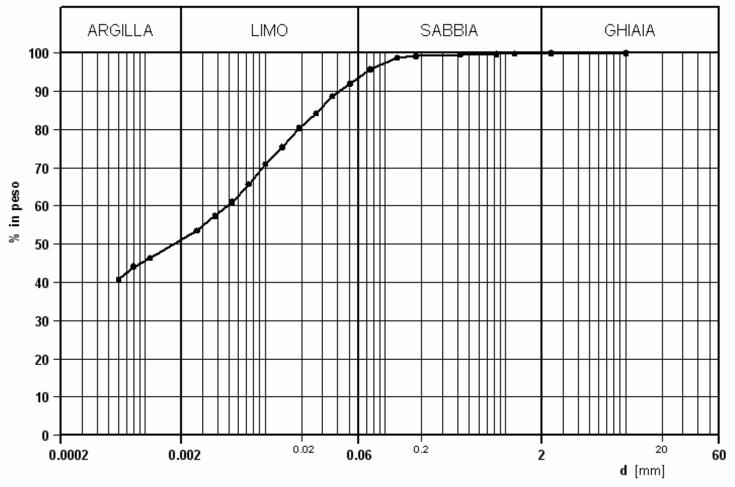
Dimensioni 1 = 35 cm

Condizioni campione Buone

Prove eseguite γ_s , G, w

Rp [N/mm²] Descrizione

(Normativa ASTM D2487/00 - ASTM D2488/00)


Sabbia limosa di colore grigio, mediamente addensata, fossilifera.

Lo Sperimentatore

Salvatore Febo Ing. Gabriele Speciale

Verbale di accet	tazione <u>04</u> .	/2006			Се	rtificato n°				
Richiedente SY	Richiedente SYSTRA S.A.									
avoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo										
Sondaggio	S2-57	Campione	3	Profondità da m	23.60	am	24.00			
Data inizio prova	20/7/2	2006			Data fine prova	a 25/	7/2006			

Composizione granulometrica Argilla con limo deb. sabbiosa

$$U = \frac{d_{60}}{d_{10}} = \frac{60}{100} = \frac{60}$$

Note _____

Lo Sperimentatore

Il Direttore del laboratorio Ing. Gabriele Speciale

Salvatore Febo

Rif. verbale di accettazione 04/2006 Certificato n. -

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-57 Campione 4 Profondità da m 28.50 a m 29.00

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo 3/7/2006

Data di arrivo in laboratorio 4/7/2006

Data di apertura 13/7/2006

Contenitore Fustella metallica

Dimensioni 1 = 34 cm

Condizioni campione Discrete

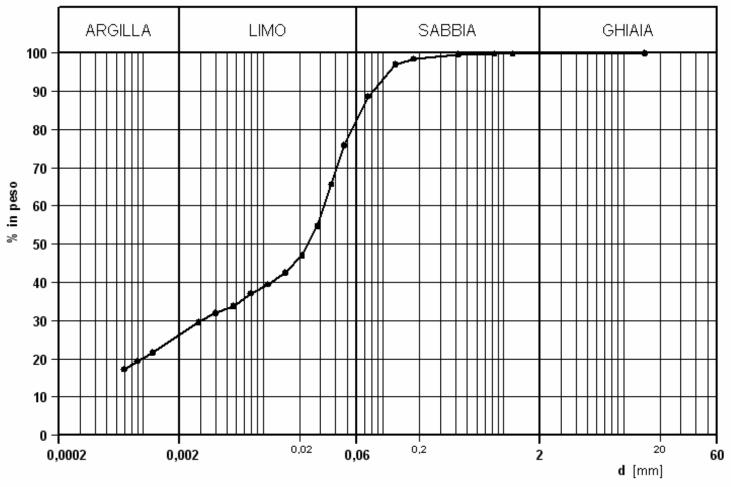
Prove eseguite γ_s , G, w

Rp [N/mm²] Descrizione

(Normativa ASTM D2487/00 – ASTM D2488/00)

Sabbia limosa di colore grigio verdastro, fossilifera, ben addensata, con

frustoli carboniosi nerastri.


Lo Sperimentatore

Salvatore Febo

Il Direttore del Laboratorio

Verbale di accettazione 04	4/2006			Cer	tificato n°	· _			
Richiedente SYSTRA S.A.									
Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo									
Sondaggio S2-57	Campione	4	Profondità da m	28.50	am	29.00			
Data inizio prova 18/7	/2006			Data fine prova	a 25/	7/2006			

Composizione granulometrica Limo con argilla sabbioso

$$U = \frac{d_{60}}{d_{10}} = \frac{3}{100}$$
 % < d = 0,002 mm \quad 27

Note _____

Lo Sperimentatore Salvatore Febo

Il Direttore del Laboratorio

Rif. verbale di accettazione 04/2006 Certificato n. -

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-58 Campione 1 Profondità da m 19.80 a m 20.30

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo 27/6/2006

Data di arrivo in laboratorio 4/7/2006

Data di apertura 7/7/2006

Contenitore Fustella metallica

Dimensioni 1 = 32 cm

Condizioni campione Discrete

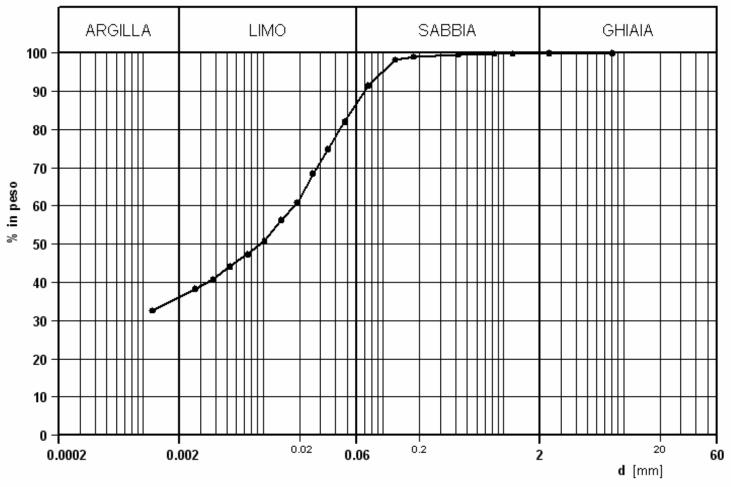
Prove eseguite γ , γ_s , G, w, w_p , w_l , TD (CD)

Rp [N/mm²] Descrizione

(Normativa ASTM D2487/00 – ASTM D2488/00)

Limo sabbioso di colore grigio, con numerosi frammenti di conchiglie, $w_{\rm n}$ >

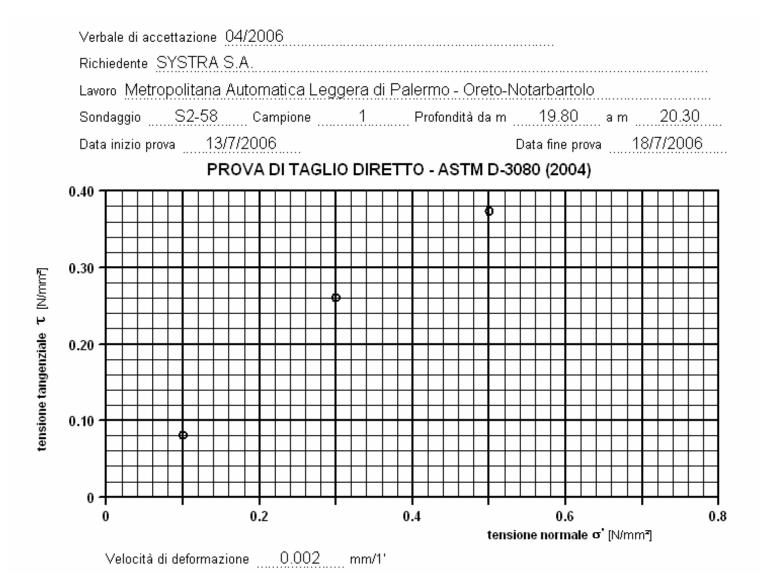
w_p.


Lo Sperimentatore

Salvatore Febo Ing. Gabriele Speciale

Modulo 9.29A - Rev. 1 del 06/06/05

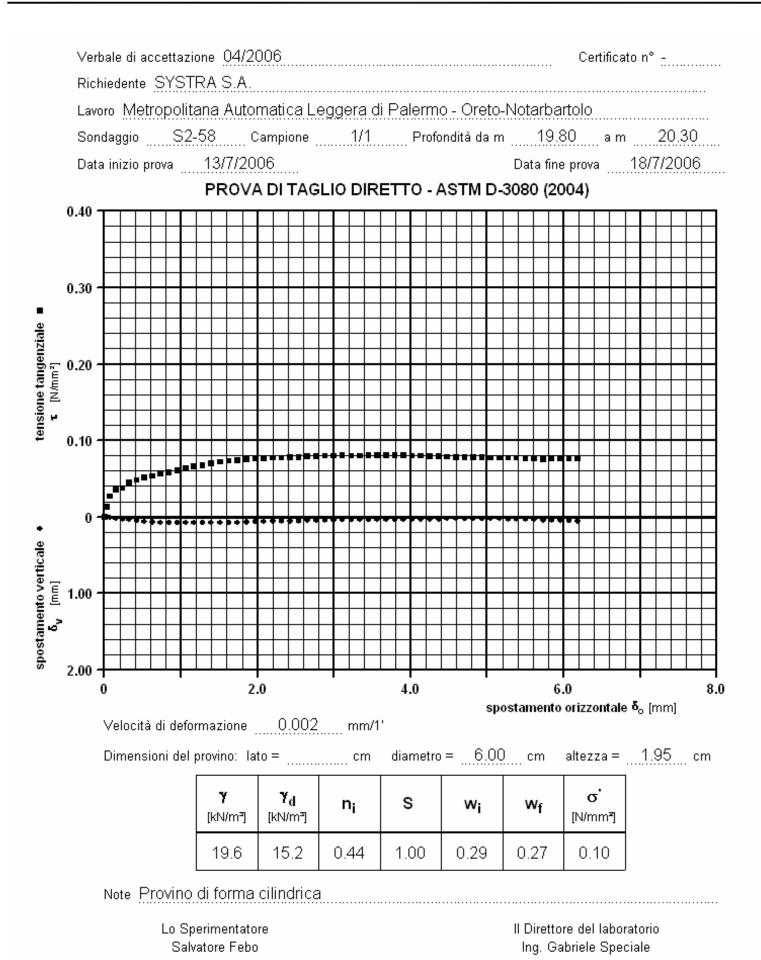
Verbale di accettazione 04/2006		Certificat	o n° -		
Richiedente SYSTRA S.A.					
Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo					
Sondaggio S2-58 Campione 1	Profondità da m	19.80 am	20.30		
Data inizio prova 11/7/2006	D:	ata fine prova	14/7/2006		


Composizione granulometrica Limo con argilla sabbioso

$$U = \frac{d_{60}}{d_{10}} = \frac{36}{100}$$
 % < d = 0,002 mm

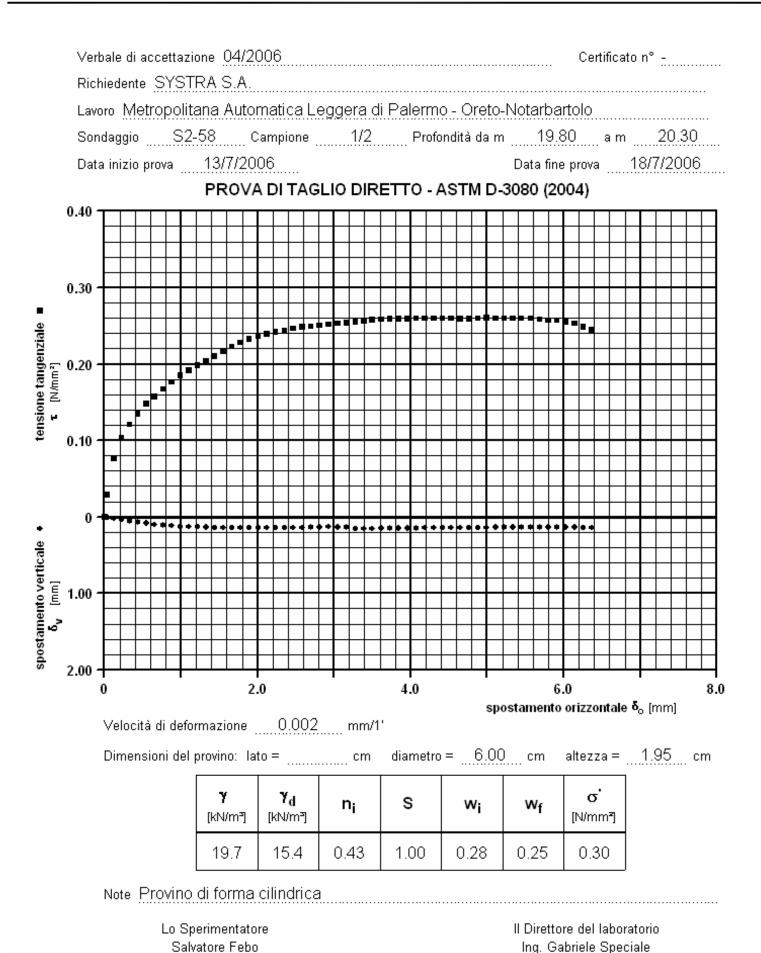
Note _____

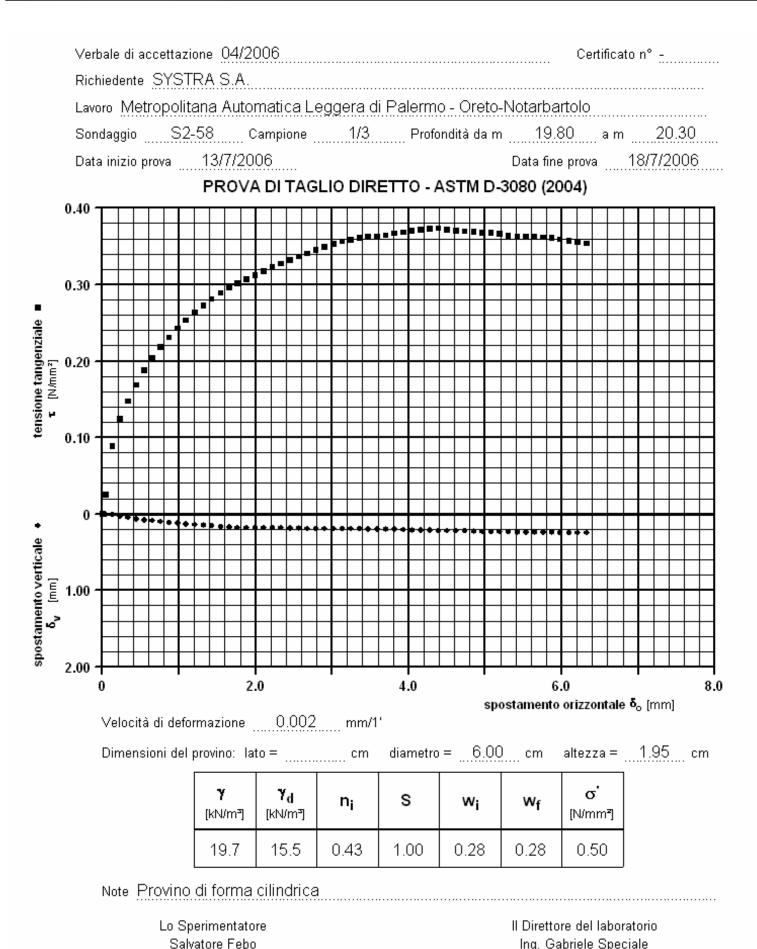
Lo Sperimentatore Salvatore Febo



Provino	Y [kN/m³]	Υ _d [kN/m³]	n _i	s	w _i	w _f	ፒ _f [N/mm²]	σ' [N/mm²]	δ _{of} [mm]
1	19.6	15.2	0.44	1.00	0.29	0.27	0.081	0.10	3.03
2	19.7	15.4	0.43	1.00	0.28	0.25	0.261	0.30	4.95
3	19.7	15.5	0.43	1.00	0.28	0.28	0.374	0.50	4.31

Note Prova consolidata drenata


Lo Sperimentatore Salvatore Febo



E-mail: info@laboratoriometro.it

Certificato n. -

Rif. verbale di accettazione 04/2006

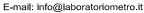
Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-58 Campione 1 Profondità da m 19,80 a m 20,30

RISULTATI DELLA PROVA DI TAGLIO DIRETTO - ASTM D-3080 (2004)

Data inizio prova 13/7/2006


Data fine prova 18/7/2006

Data iiiizio piova 13/1/2000 Data iiile piova 10/1/2000						.000	
Provino 1		2			3		
σ' [N/mm ²] 0.1		0.3		0.5			
S [mm] IN/~	m^2] δ_v [mm]	δ _o [mm]	τ [N/mm²]	δ _v [mm]	δ _o [mm]	- [N]/mm ² 1	2 [mm] 2
_	=					τ [N/mm ²]	
0.000 0.00		0.000	0.000	0.000	0.000	0.000	0.000
0.025 0.01		0.032	0.029	0.007	0.039	0.025	0.002
0.069 0.02		0.119	0.077	0.017	0.123	0.089	0.007
0.143 0.03		0.220	0.104	0.032	0.222	0.125	0.027
0.235 0.03		0.327	0.121	0.047	0.328	0.148	0.044
0.320 0.04		0.433	0.135	0.067	0.434	0.169	0.061
0.417 0.04		0.542	0.148	0.080	0.543	0.188	0.074
0.518 0.05		0.651	0.158	0.095	0.651	0.205	0.086
0.624 0.05		0.762	0.168	0.105	0.757	0.219	0.098
0.731 0.05		0.874	0.177	0.112	0.868	0.231	0.108
0.841 0.05		0.985	0.185	0.120	0.979	0.243	0.118
0.949 0.06		1.096	0.192	0.125	1.088	0.254	0.128
1.061 0.06		1.210	0.199	0.122	1.201	0.264	0.137
1.166 0.06		1.322	0.205	0.132	1.315	0.273	0.142
1.279 0.06		1.433	0.211	0.137	1.425	0.282	0.150
1.392 0.07	0.069	1.547	0.217	0.135	1.539	0.289	0.160
1.505 0.07	2 0.069	1.661	0.223	0.137	1.652	0.296	0.167
1.619 0.07	4 0.069	1.775	0.228	0.139	1.763	0.302	0.174
1.734 0.07	75 0.069	1.888	0.233	0.139	1.877	0.307	0.177
1.850 0.07	6 0.067	2.005	0.237	0.139	1.992	0.312	0.179
1.962 0.07	7 0.059	2.116	0.240	0.139	2.106	0.318	0.179
2.078 0.07	7 0.054	2.232	0.242	0.139	2.219	0.323	0.177
2.193 0.07	8 0.050	2.346	0.245	0.139	2.332	0.328	0.179
2.309 0.07	8 0.047	2.463	0.247	0.139	2.448	0.333	0.182
2.422 0.07	9 0.050	2.579	0.249	0.135	2.559	0.337	0.184
2.535 0.07		2.693	0.250	0.130	2.672	0.341	0.187
2.649 0.08		2.807	0.251	0.127	2.786	0.345	0.189
2.766 0.08		2.923	0.252	0.125	2.899	0.349	0.189
2.878 0.08		3.042	0.253	0.127	3.015	0.353	0.189
2.992 0.08	0.035	3.158	0.254	0.132	3.128	0.357	0.191
3.105 0.08	0.032	3.277	0.256	0.147	3.239	0.359	0.191
3.219 0.08	0.032	3.386	0.257	0.149	3.353	0.361	0.191
3.333 0.08	0.032	3.495	0.258	0.147	3.466	0.363	0.194
3.446 0.08	0.032	3.609	0.259	0.142	3.582	0.364	0.196
3.559 0.08	0.032	3.725	0.259	0.144	3.698	0.365	0.196
3.675 0.08	0.032	3.839	0.259	0.144	3.813	0.367	0.199
3.787 0.08	0.032	3.955	0.259	0.142	3.927	0.369	0.204
3.903 0.08		4.066	0.260	0.142	4.043	0.371	0.206
4.017 0.08	0.025	4.183	0.260	0.139	4.156	0.372	0.209

Lo Sperimentatore

Salvatore Febo

Il Direttore del Laboratorio

Certificato n. -

Rif. verbale di accettazione 04/2006

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-58 Campione 1 Profondità da m 19,80 a m 20,30

RISULTATI DELLA PROVA DI TAGLIO DIRETTO - ASTM D-3080 (2004)

Data inizio prova 13/7/2006

Data fine prova 18/7/2006

Data inizio prova 13/7/2006	Data fine prova 18/7/2006			
Provino 1	2	3		
σ' [N/mm²] 0.1	0.3	0.5		
Provino 1		3		

Lo Sperimentatore

Il Direttore del Laboratorio Ing. Gabriele Speciale

Salvatore Febo

Rif. verbale di accettazione 04/2006 Certificato n. -

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-58 Campione 2 Profondità da m 21.50 a m 22.00

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo 27/6/2006

Data di arrivo in laboratorio 4/7/2006

Data di apertura 12/7/2006

Contenitore Fustella metallica

Dimensioni 1 = 35 cm

Condizioni campione Buone

Prove eseguite γ_s , G, w

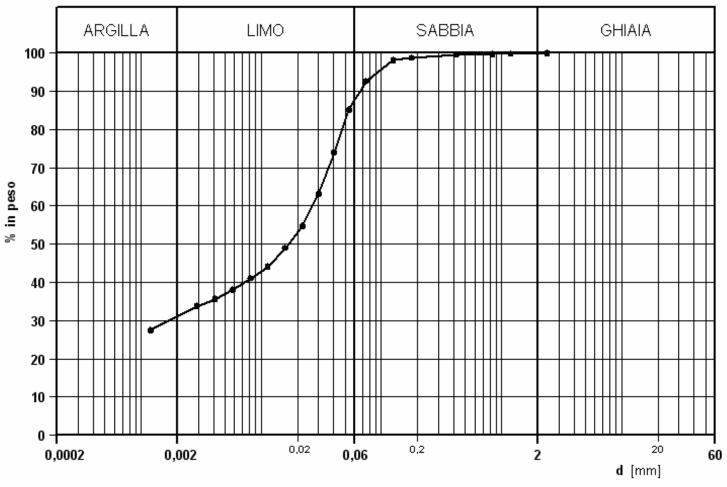
Rp [N/mm²]

Descrizione

(Normativa ASTM D2487/00 - ASTM D2488/00)

Limo sabbioso argilloso di colore grigio, da consistente a poco consistente, fossilifero, con frustoli nerastri, $w_n \ge w_p$. 0.12-0.09-

Lo Sperimentatore


0.08 -

Salvatore Febo

Il Direttore del Laboratorio

Verbale di accettazione 04/2	2006		Cert	ificato n°	-
Richiedente SYSTRA S.A.					
Lavoro Metropolitana Auto	omatica Leggera di	Palermo - Oreto-N	lotarbartolo		
Sondaggio S2-58	Campione 2	Profondità da m	21.50	am	22.00
Data inizio prova 17/7/20	006		Data fine prova	20/7	/2006

Composizione granulometrica Limo con argilla sabbioso

$$U = \frac{d_{60}}{d_{10}} = \frac{31}{100}$$

Note _____

Lo Sperimentatore Salvatore Febo

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-58 Campione 3 Profondità da m 24.00 a m 24.50

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

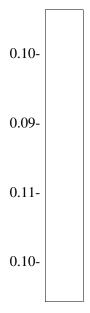
Data di prelievo 28/6/2006

Data di arrivo in laboratorio 4/7/2006

Data di apertura 13/7/2006

Contenitore Fustella metallica

Dimensioni l = 31 cm


Condizioni campione Buone

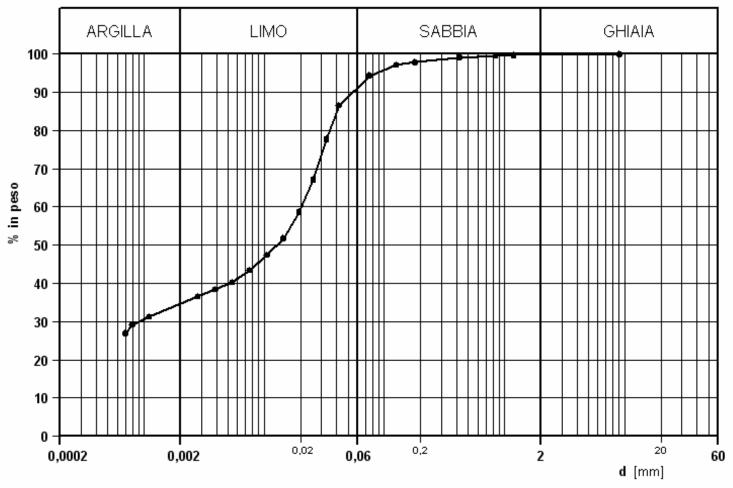
Prove eseguite γ_s , G, w

 $\mathbf{Rp} [N/mm^2]$

Descrizione

(Normativa ASTM D2487/00 - ASTM D2488/00)

Limo argilloso sabbioso di colore grigio, consistente, $w_n \leq w_p$, con frammenti di fossili e veli di sabbia fina.


Lo Sperimentatore

Salvatore Febo

Il Direttore del Laboratorio

Verbale di accettazione 04/	2006			Ce	rtificato n°	-
Richiedente SYSTRAS.A	١					
Lavoro Metropolitana Aut	tomatica Legg	iera di Pa	llermo - Oreto-l	Votarbartolo		
Sondaggio S2-58	Campione	3	Profondità da m	24.00	.am	24.50
Data inizio prova 18/7/2	2006			Data fine prov	a 25/7	7/2006

Composizione granulometrica Limo con argilla sabbioso

$$U = \frac{d_{60}}{d_{10}} = \frac{35}{100}$$
 % < d = 0,002 mm

Note _____

.....

Lo Sperimentatore Salvatore Febo

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-58 Campione 4 Profondità da m 27.00 a m 27.50

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo 28/6/2006

Data di arrivo in laboratorio 4/7/2006

Data di apertura 14/7/2006

Contenitore Fustella metallica

Dimensioni 1 = 35 cm

Condizioni campione Buone

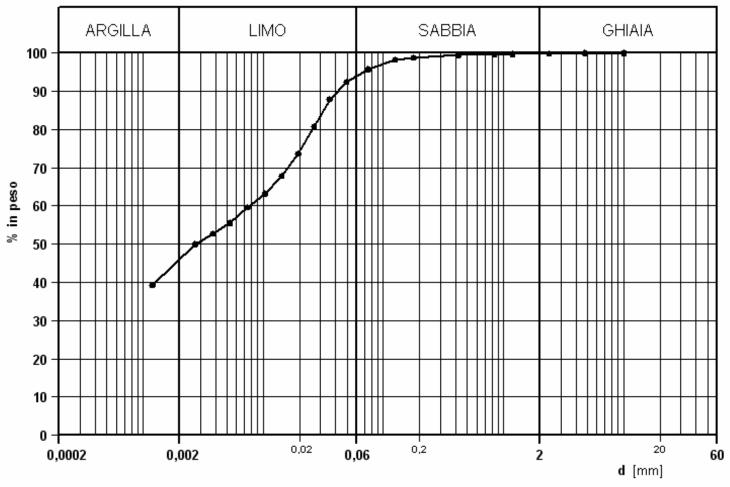
Prove eseguite γ_s , G, w

Rp [N/mm²]

Descrizione

(Normativa ASTM D2487/00 - ASTM D2488/00)

0.08-0.09-0.11-0.12-0.10Limo sabbioso argilloso di colore grigio, poco consistente, $w_n > w_p$, con frustoli carboniosi nerastri e fossili.


Lo Sperimentatore

Salvatore Febo

Il Direttore del Laboratorio

Verbale di accetta	zione 04/	/2006			Cer	rtificato n'	° -	
Richiedente SYS	TRAS.A	١						
Lavoro Metropol	itana Au	tomatica Le	eggera di Pa	lermo - Oreto-N	Votarbartolo			
Sondaggio S	2-58	Campione	4	Profondità da m	27.00	am	27.50	
Data inizio prova	24/7/2	2006			Data fine prova	a 27/	7/2006	

Composizione granulometrica Limo con argilla deb. sabbioso

$$U = \frac{d_{60}}{d_{10}} = \frac{d_{60}}{d_{10}} = \frac{46}{d_{10}}$$

Note _____

Lo Sperimentatore Salvatore Febo

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-59 Campione R1 Profondità da m 14.00 a m 14.30

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo 12/7/2006

Data di arrivo in laboratorio 19/7/2006

Data di apertura 27/7/2006

Contenitore Sacchetto di plastica

Dimensioni l = 30 cm

Condizioni campione Campione rimaneggiato

Prove eseguite w

Rp [N/mm²] Descrizione

(Normativa ASTM D2487/00 – ASTM D2488/00)

Limo sabbioso e sabbia limosa di colore giallo ocra, poco consistente, $w_n > w_n$

 w_p , con noduli di sabbia ocra e numerosi noduli calcarenitici.

Lo Sperimentatore

Salvatore Febo

Il Direttore del Laboratorio

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

S2-59 Profondità da m 21.00 Sondaggio Campione a m 21.50

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo 13/7/2006

Data di arrivo in laboratorio 19/7/2006

24/7/2006 Data di apertura

Contenitore Fustella metallica

Dimensioni 1 = 35 cm

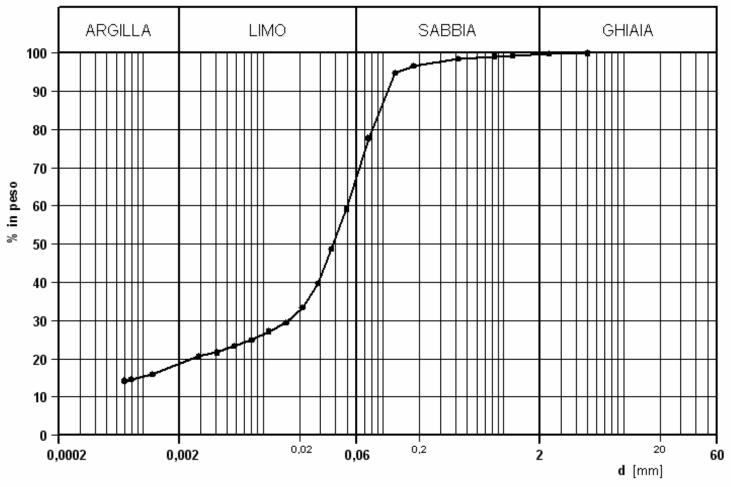
Condizioni campione Buone

Prove eseguite γ_s , G, w

Descrizione **Rp** [N/mm²]

(Normativa ASTM D2487/00 – ASTM D2488/00)

Sabbia limosa di colore grigio, mediamente addensata, fossilifera.


Lo Sperimentatore

Salvatore Febo Ing. Gabriele Speciale

Il Direttore del Laboratorio

Verbale di accettazione 04/2006	Certificato n° -
Richiedente SYSTRA S.A.	
Lavoro Metropolitana Automatica Leggera di Palermo - Oreto	o-Notarbartolo
Sondaggio S2-59 Campione 1 Profondità da	m 21.00 am 21.50
Data inizio prova 27/7/2006	Data fine prova 1/8/2006

Composizione granulometrica Limo con sabbia argilloso

$$U = \frac{d_{60}}{d_{10}} = \frac{d_{60}}{d_{10}} = \frac{19}{1000}$$

Note _____

Lo Sperimentatore Salvatore Febo

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-59 Campione R2 Profondità da m 24.40 a m 24.80

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo 13/7/2006

Data di arrivo in laboratorio 19/7/2006

Data di apertura 27/7/2006

Contenitore Sacchetto di plastica

Dimensioni l = 35 cm

Condizioni campione Campione rimaneggiato

Prove eseguite w

Rp [N/mm²] Descrizione

(Normativa ASTM D2487/00 - ASTM D2488/00)

Limo argilloso, a tratti sabbioso, di colore grigio, con torba e frustoli nerastri;

 $w_n \ge w_p$.

Lo Sperimentatore

Salvatore Febo

Il Direttore del Laboratorio

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-59 Campione 2 Profondità da m 25.80 a m 26.00

SCHEDA DESCRIZIONE CAMPIONE

Attrezzatura e modalità di prelievo

Data di prelievo 13/7/2006

Data di arrivo in laboratorio 19/7/2006

Data di apertura 24/7/2006

Contenitore Fustella metallica

Dimensioni l = 20 cm

Condizioni campione Buone

Prove eseguite γ , γ_s , G, w, TD (CD)

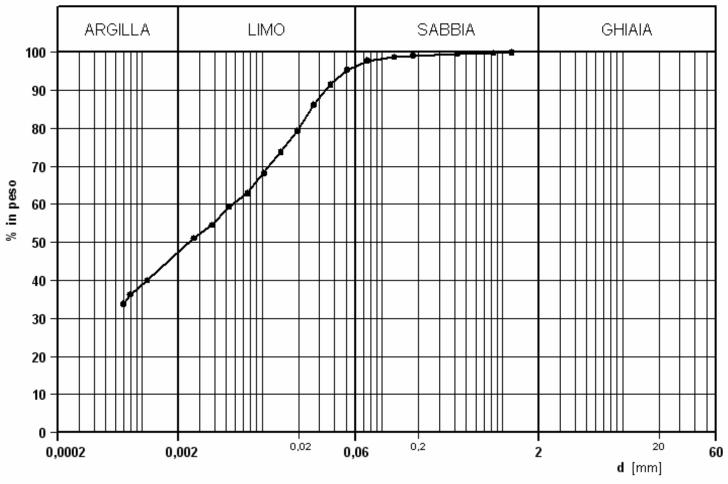
Rp [N/mm²]

Descrizione

(Normativa ASTM D2487/00 - ASTM D2488/00)

0.10-0.12-0.12-

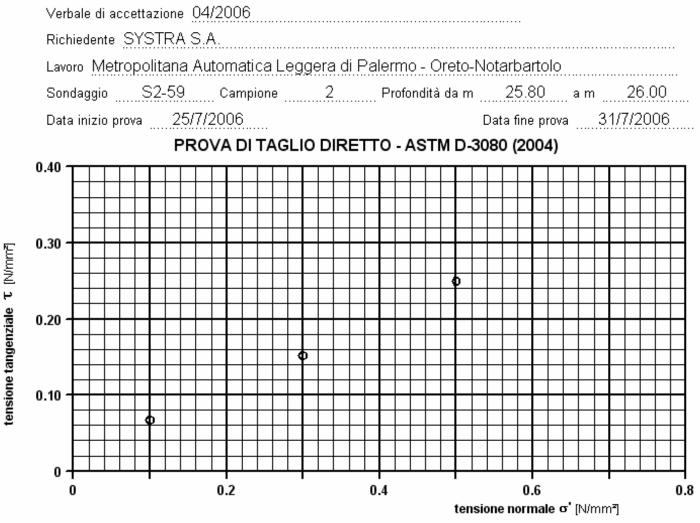
Limo argilloso di colore grigio, consistente, $w_n \geq w_p$, con frustoli carboniosi, torba e conchiglie.


Lo Sperimentatore

Salvatore Febo

Il Direttore del Laboratorio

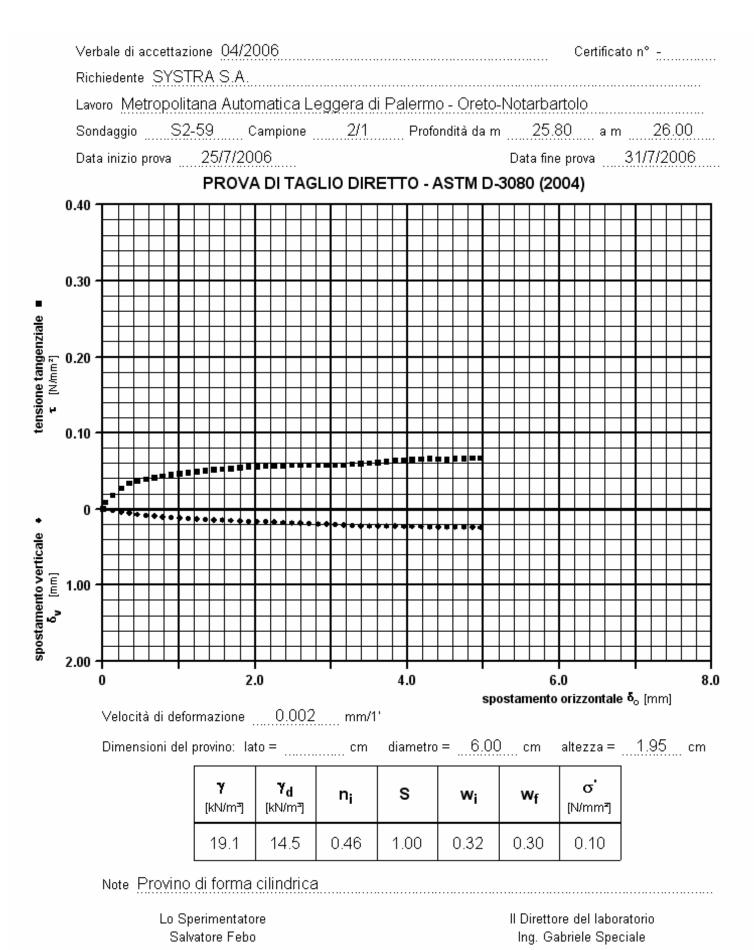
Verbale di acc	ettazione <u>0</u> 4	1/2006			Ce	rtificat	o n°
Richiedente S	SYSTRA S.	A					
Lavoro Metro	opolitana Au	utomatica Le	ggera di P	alermo - Oreto-l	Votarbartolo		
Sondaggio	S2-59	Campione	2	Profondità da m	25.80	am	26.00
Data inizio pro	ova 27/7/	2006			Data fine prova	а	1/8/2006


Composizione granulometrica Limo con argilla

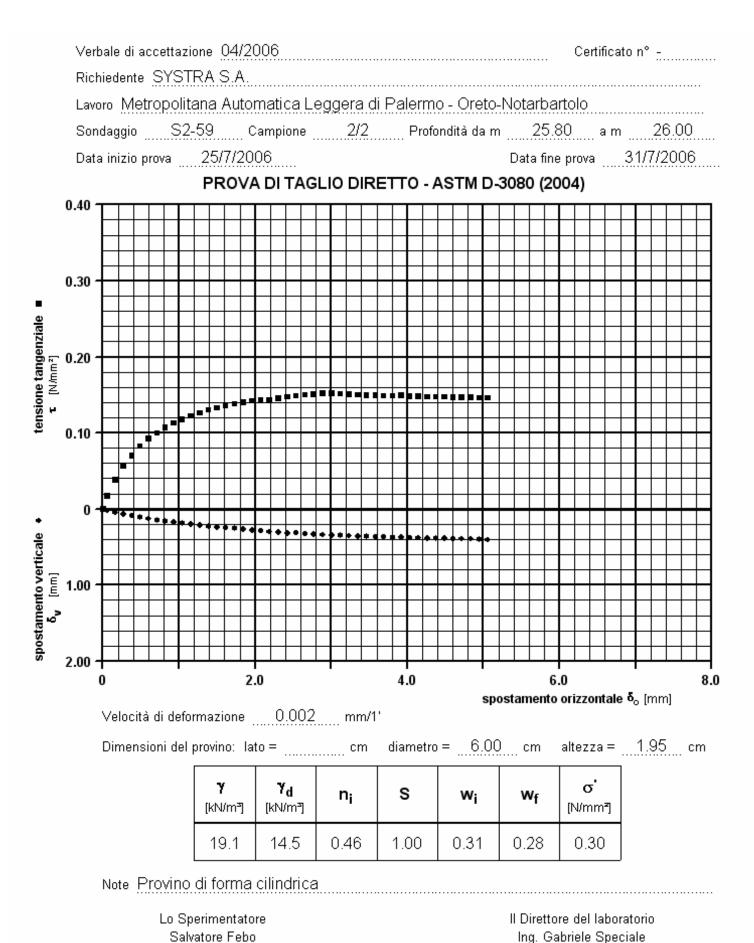
Note _____

.....

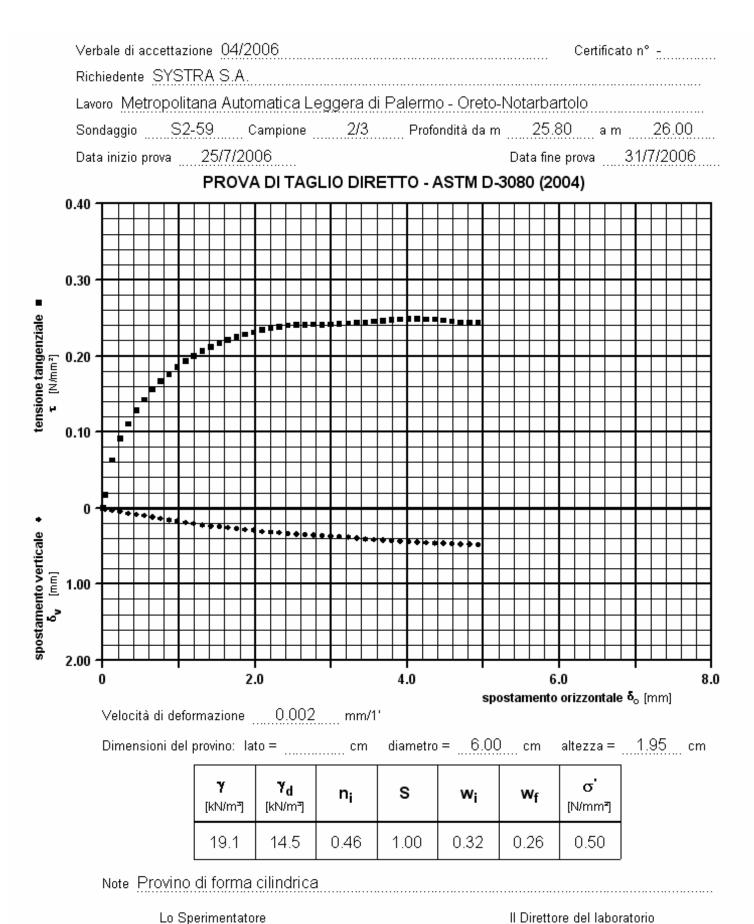
Lo Sperimentatore Salvatore Febo


Velocità di deformazione0.0		/11
-----------------------------	--	-----

Provino	y [kN/m³]	Ϋ́ _d [kN/m³]	ni	Ø	w _i	w _f	Ն_f [N/mm²]	σ' [N/mm²]	δ _{of} [mm]
1	19.1	14.5	0.46	1.00	0.32	0.30	0.067	0.10	4.85
2	19.1	14.5	0.46	1.00	0.31	0.28	0.152	0.30	2.88
3	19.1	14.5	0.46	1.00	0.32	0.26	0.250	0.50	3.98


Note Prova consolidata drenata

Lo Sperimentatore Salvatore Febo



Mode to 9,37C - Rev. 1 de l 22/07/05

Ing. Gabriele Speciale

Salvatore Febo

Certificato n. -

Rif. verbale di accettazione 04/2006

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-59 Campione 2

Profondità da m 25,80 a m 26,00

RISULTATI DELLA PROVA DI TAGLIO DIRETTO - ASTM D-3080 (2004)

Data inizio prova 25/7/2006

Data fine prova 31/7/2006

	Data lilizio piova 23/1/2000 Data lilie piova 31/1/2000							
Provino	1			2			3	
σ' [N/mm²	0.1			0.3			0.5	
δ_{o} [mm]	τ [N/mm ²]	s [mm]	δ_{o} [mm]	τ [N/mm ²]	δ_v [mm]	δ _o [mm]	τ [N/mm²]	s [mm]
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.024	0.009	0.002	0.052	0.018	0.020	0.027	0.018	0.017
0.127	0.018	0.015	0.160	0.039	0.042	0.121	0.063	0.029
0.235	0.027	0.034	0.266	0.057	0.067	0.225	0.091	0.043
0.342	0.034	0.053	0.375	0.071	0.084	0.329	0.111	0.069
0.452	0.037	0.068	0.483	0.083	0.106	0.435	0.128	0.084
0.562	0.039	0.083	0.594	0.093	0.124	0.544	0.143	0.098
0.672	0.041	0.090	0.705	0.100	0.141	0.650	0.156	0.117
0.782	0.043	0.104	0.813	0.108	0.156	0.756	0.167	0.136
0.895	0.045	0.112	0.927	0.114	0.170	0.865	0.176	0.153
1.007	0.047	0.117	1.040	0.118	0.185	0.974	0.186	0.172
1.120	0.048	0.126	1.151	0.123	0.195	1.083	0.193	0.189
1.230	0.049	0.131	1.267	0.127	0.210	1.194	0.200	0.203
1.345	0.051	0.138	1.383	0.131	0.220	1.305	0.207	0.220
1.457	0.052	0.143	1.494	0.133	0.232	1.416	0.212	0.232
1.570	0.053	0.146	1.609	0.137	0.242	1.527	0.218	0.241
1.682	0.053	0.151	1.725	0.139	0.252	1.639	0.221	0.255
1.797	0.054	0.158	1.839	0.140	0.264	1.752	0.225	0.267
1.910	0.056	0.160	1.955	0.142	0.274	1.863	0.229	0.279
2.022	0.056	0.163	2.070	0.143	0.284	1.977	0.231	0.291
2.137	0.057	0.165	2.186	0.144	0.294	2.088	0.234	0.306
2.252	0.057	0.172	2.304	0.146	0.304	2.204	0.237	0.313
2.367	0.057	0.177	2.418	0.148	0.314	2.313	0.239	0.320
2.479	0.058	0.182	2.534	0.149	0.309	2.429	0.240	0.334
2.594	0.058	0.185	2.652	0.150	0.324	2.540	0.241	0.339
2.707	0.058	0.189	2.765	0.151	0.329	2.654	0.241	0.348
2.824	0.058	0.194	2.884	0.152	0.336	2.767	0.242	0.356
2.934	0.058	0.197	3.000	0.152	0.341	2.878	0.241	0.360
3.049	0.058	0.204	3.113	0.152	0.343	2.992	0.242	0.368
3.162	0.058	0.211	3.229	0.151	0.348	3.105	0.242	0.377
3.274	0.059	0.214	3.345	0.151	0.353	3.221	0.243	0.384
3.387	0.060	0.219	3.458	0.150	0.356	3.335	0.244	0.394
3.502	0.060	0.219	3.576	0.150	0.361	3.449	0.244	0.406
3.614	0.061	0.221	3.687	0.149	0.363	3.562	0.246	0.413
3.727	0.062	0.223	3.801	0.149	0.368	3.676	0.246	0.420
3.837	0.064	0.221	3.914	0.150	0.371	3.789	0.248	0.430
3.954	0.064	0.226	4.027	0.149	0.376	3.901	0.248	0.437
4.064	0.065	0.228	4.141	0.148	0.376	4.014	0.249	0.442
4.179	0.066	0.228	4.257	0.148	0.378	4.130	0.249	0.446

Lo Sperimentatore

Il Direttore del Laboratorio

Salvatore Febo

Rif. verbale di accettazione 04/2006

Certificato n. -

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio S2-59 Campione 2

Profondità da m 25,80 a m 26,00

RISULTATI DELLA PROVA DI TAGLIO DIRETTO - ASTM D-3080 (2004)

Data inizio prova 25/7/2006

Data fine prova 31/7/2006

Lo Sperimentatore Salvatore Febo