COMMITTENTE



## COMUNE DI PALERMO AREA INFRASTRUTTURE E TERRITORIO

**PROGETTISTA** 

ATI:









DOMINIQUE PERRAULT ARCHITECTE

(Capogruppo Mandataria)

# METROPOLITANA AUTOMATICA LEGGERA DELLA CITTA' DI PALERMO PRIMA LINEA TRATTA FUNZIONALE ORETO/NOTARBARTOLO

## PROGETTO PRELIMINARE

## PROVE DI LABORATORIO SU CAMPIONI DI ROCCIA

| MPA1 | FASE | COMPARTO | DOCUMENTO INPL 0 1 | REV 1 | SCALA | OME FILE ND_INPL01_ | 1.pdf       |
|------|------|----------|--------------------|-------|-------|---------------------|-------------|
|      |      |          |                    |       |       |                     | PROGETTISTA |
|      |      |          |                    |       |       |                     |             |

AGOSTO AGGIORNAMENTO DATA DI CONSEGNA 1 Speciale Canzoneri Checchi Piscitelli 2006 AGOSTO EMISSIONE ELABORATI OPERE CIVILI 0 Speciale Canzoneri Checchi Piscitelli 2006 PER CONSEGNA FINALE REV. DATA REDATTO CONTROLLATO **APPROVATO AUTORIZZATO DESCRIZIONE** 

www.laboratoriometro.it E-mail: info@laboratoriometro.it

## PROVE DI LABORATORIO SU CAMPIONI DI ROCCIA

Ente Appaltante Comune di Palermo

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera della Città di Palermo. Prima

linea - Oreto-Notarbartolo

Lettera di incarico Prot. 767 - Rif. L.I. 41/2005

Commessa 4583A001

Il presente elaborato è composto da 17 fogli numerati da 1 a 17.

Palermo, 7 aprile 2006

Il Direttore del Laboratorio

Ing. Gabriele Speciale



# Metropolitana Automatica Leggera della Città di Palermo. Prima linea - Oreto-Notarbartolo

#### Prove di laboratorio

Nel presente elaborato si riportano i risultati delle prove di laboratorio effettuate su .. campioni di roccia prelevati nel corso delle indagini Metropolitana Automatica Leggera di Palermo. Prima linea - Oreto-Notarbartolo.

Le prove sono state effettuate su incarico del SYSTRA S.A..

I campioni, pervenuti in laboratorio il giorno 28 marzo 2006, sono stati descritti singolarmente, specificando il colore, la grana, la porosità, il grado di cementazione e l'eventuale presenza di alterazioni.

Sono state effettuate prove di identificazione consistenti nella determinazione del peso dell'unità di volume  $\gamma$  e del contenuto d'acqua w.

In particolare, la determinazione del peso dell'unità di volume  $\gamma$  è stata effettuata con il metodo del calibro, quella del contenuto d'acqua w con il metodo della doppia pesata.

Per la determinazione delle caratteristiche di resistenza sono state effettuate 4 prove di compressione semplice e 22 prove di carico puntuale.

Le prove sono state eseguite utilizzando una macchina universale GALDABINI PMA 60, matricola n. 33201, di portata 600 kN, classe 1. La verifica semestrale di taratura è stata eseguita dal Dipartimento di Ingegneria Strutturale e Geotecnica dell'Università di Palermo il 13/12/2005.

Le prove di compressione semplice sono state eseguite su campioni di forma cilindrica ricavati mediante sagomatura, in accordo con quanto previsto dalla Normativa ISRM (1978). La tensione normale applicata  $\sigma_v$  è stata misurata mediante una cella di carico elettronica e l'accorciamento verticale del campione per mezzo di un trasduttore elettronico. Sono stati inoltre determinati il peso dell'unità di volume  $\gamma$  ed il contenuto d'acqua w.

I risultati delle prove sono stati diagrammati in grafici  $\sigma_v/\epsilon$ .

Le prove di carico puntuale sono state eseguite in accordo con quanto previsto dalla Normativa ISRM (1985).

Sono state effettuate prove *assiali* applicando il carico parallelamente all'asse, su provini di forma cilindrica, con D e 2L rispettivamente altezza media e diametro medio.



Dal momento che la roccia non presentava laminazioni, stratificazioni, scistosità o comunque anisotropie in genere, non è stato determinato il valore dell'indice di anisotropia.

Nel modulo allegato, oltre ai valori delle grandezze geometriche e del carico di rottura P, si riportano il diametro equivalente  $D_e$ , l'indice di carico puntuale  $I_s$ , il fattore di correzione di forma F e l'indice di carico puntuale standard  $I_{s(50)}$ .

Nelle pagine seguenti sono riportati, nell'ordine, l'elenco dei simboli adottati, il riepilogo di tutte le analisi e prove eseguite sui campioni e le descrizioni; seguono quindi le schede relative alle prove eseguite sui singoli campioni.

Palermo, 7 aprile 2006



## ELENCO DEI SIMBOLI

| γ                               | Peso dell'unità di volume                        | $\sigma_1$                  | Tensione assiale                                             |
|---------------------------------|--------------------------------------------------|-----------------------------|--------------------------------------------------------------|
| $\gamma_{sat}$                  | Peso dell'unità di volume del campione saturo    | $\sigma_3$                  | Pressione di confinamento                                    |
| $\gamma_{i}$                    | Peso dell'unità di volume all'inizio della prova | $\sigma_{1f}$               | Tensione assiale a rottura                                   |
| $\gamma_{\rm f}$                | Peso dell'unità di volume alla fine della prova  | $\sigma_{t} \\$             | Tensione di trazione                                         |
| W                               | Contenuto d'acqua                                | $(\sigma_1 - \sigma_3)_f$   | Tensione deviatorica a rottura                               |
| $w_{\text{sat}}$                | Contenuto d'acqua del campione saturo            | τ                           | Tensione tangenziale                                         |
| $w_i$                           | Contenuto d'acqua all'inizio della prova         | $\tau_{\mathrm{f}}$         | Tensione tangenziale a rottura                               |
| $\mathbf{w}_{\mathrm{f}}$       | Contenuto d'acqua alla fine della prova          | $\tau_{\mathbf{r}}$         | Resistenza residua                                           |
| $w_{opt}$                       | Contenuto d'acqua all'ottimo di costipamento     | u                           | Pressione neutra                                             |
| G                               | Analisi granulometrica                           | $u_{\rm f}$                 | Pressione neutra a rottura                                   |
| U                               | Coefficiente di uniformità                       | ε                           | Deformazione                                                 |
| d                               | Dimensione del grano                             | $\epsilon_{\mathrm{f}}$     | Deformazione a rottura                                       |
| $l_{o}$                         | Altezza del campione all'inizio della prova      | $\delta_{x}$ , $\delta_{y}$ | Componenti dello spostamento orizzontale                     |
| γd                              | Peso secco dell'unità di volume                  |                             | secondo le direzioni x e y                                   |
| γdmax                           | Peso secco dell'unità di volume all'ottimo di    | δ                           | Spostamento orizzontale assoluto                             |
|                                 | costipamento                                     | $\delta_{o}$ , $\delta_{v}$ | Spostamenti orizzontali e verticali                          |
| $\gamma_{ m s}$                 | Peso specifico dei grani                         | $\delta_{of}$               | Spostamento orizzontale a rottura                            |
| e                               | Indice dei vuoti                                 | E <sub>t</sub>              | Modulo di Young tangente per $\sigma_v = \frac{\sigma_f}{2}$ |
| $e_0$                           | Indice dei vuoti all'inizio della prova          | <b>-</b> ≀                  | woodalo ar roung tangente per ov 2                           |
| $e_{f}$                         | Indice dei vuoti alla fine della prova           | $E_s$                       | Modulo di Young secante per $\sigma_V = \frac{\sigma_f}{2}$  |
| n                               | Porosità                                         | -5                          | Woodale at Total greenine per ov 2                           |
| $n_e$                           | Porosità effettiva delle rocce                   | $v_{\delta}$                | Velocità media di deformazione per minuto in percentuale     |
| S                               | Grado di saturazione                             | $c_{v}$                     | Coefficiente di consolidazione                               |
| $\mathbf{w}_{\mathbf{p}}$       | Limite di plasticità                             | $E_{ed}$                    | Modulo di compressione edometrica                            |
| $\mathbf{w}_1$                  | Limite di liquidità                              | k                           | Coefficiente di permeabilità                                 |
| $I_p$                           | Indice di plasticità                             | $I_s$                       | Indice di resistenza a carico puntuale                       |
| $I_c$                           | Indice di consistenza                            | P                           | Carico puntuale di rottura                                   |
| $\mathbf{w}_{\mathbf{r}}$       | Limite di ritiro                                 | $I_{dr}$                    | Indice di durabilità                                         |
| SO                              | Contenuto di sostanza organica                   | $I_v$                       | Coefficiente di imbibizione                                  |
| CaCO <sub>3</sub>               | Contenuto di carbonato di calcio                 | Z                           | Profondità dalla testa del tubo inclinometrico               |
| $\sigma'$                       | Pressione effettiva                              | $M_d$                       | Modulo di deformazione                                       |
| $\sigma_{\scriptscriptstyle V}$ | Tensione normale                                 | Φ                           | Azimut                                                       |

Rif. verbale di accettazione 04/2006

Tensione normale a rottura

 $\sigma_{\rm f}$ 

www.laboratoriometro.it



| CS | Prova di compressione semplice    | Cost | Prova di costipamento            |
|----|-----------------------------------|------|----------------------------------|
| CE | Prova di compressione edometrica  | AS   | Modalità AASHO Standard          |
| SW | Prova di rigonfiamento            | AM   | Modalità AASHO Modificato        |
| TD | Prova di taglio diretto           | PEN  | Modalità Proctor Energia Normale |
| TR | Prova di compressione triassiale  | PED  | Modalità Proctor Energia Doppia  |
| UU | Prova non consolidata non drenata | PET  | Modalità Proctor Energia Tripla  |
| CU | Prova consolidata non drenata     | CBR  | Indice di portanza Californiana  |
| CD | Prova consolidata drenata         | ES   | Equivalente in sabbia            |

## NORMATIVE SEGUITE PER L'ESECUZIONE DELLE PROVE

American Society for Testing Materials ASTM

BSI **British Standard Institution** 

Consiglio Nazionale delle Ricerche CNR

International Society for Rock Mechanics **ISRM** 

UNI Unificazione Nazionale Italiana



Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

## RIEPILOGO PROVE ESEGUITE SUI CAMPIONI DI ROCCIA LAPIDEA

| Sondaggio                 |              |              |              | Si           | A8           |              |              |                | Si           | A 9            |
|---------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------|--------------|----------------|
| Campione                  | А            | В            | С            | D            | E            | F            | G            | Н              | А            | В              |
| da m<br>Profondità<br>a m | 3.20<br>3.50 | 4.10<br>4.20 | 4.60<br>4.80 | 5.00<br>5.10 | 5.40<br>5.50 | 5.60<br>5.80 | 6.00<br>6.30 | 16.00<br>16.20 | 6.50<br>6.70 | 10.70<br>11.00 |
| Riconoscimen<br>to e      | •            | •            | •            | •            | •            | •            | •            | •              | •            | •              |
| descrizione               |              |              |              |              |              |              |              |                |              |                |
| Data                      | 29/3/06      | 29/3/06      | 29/3/06      | 29/3/06      | 29/3/06      | 29/3/06      | 29/3/06      | 29/3/06        | 29/3/06      | 29/3/06        |
|                           |              |              | CARA         | TTERIST      | TICHE        | FISICHE      | Ξ            |                |              |                |
| γ                         | •            |              | •            |              |              |              | •            | •              |              |                |
| Data                      | 3/4/06       |              | 3/4/06       |              |              |              | 3/4/06       | 3/4/06         |              |                |
| <b>Y</b> sat<br>Data      |              |              |              |              |              |              |              |                |              |                |
| γ <sub>s</sub>            |              |              |              |              |              |              |              |                |              |                |
| Data                      |              |              |              |              |              |              |              |                |              |                |
| W                         |              |              |              |              |              |              |              |                |              |                |
| Data                      |              |              |              |              |              |              |              |                |              |                |
| n                         |              |              |              |              |              |              |              |                |              |                |
| Data                      |              |              |              |              |              |              |              |                |              |                |
| n <sub>e</sub>            |              |              |              |              |              |              |              |                |              |                |
| Data                      |              |              |              |              |              |              |              |                |              |                |
| CaCO <sub>3</sub>         |              |              |              |              |              |              |              |                |              |                |
| Data                      |              |              |              |              |              |              |              |                |              |                |
| k                         |              |              |              |              |              |              |              |                |              |                |
| Data                      |              |              |              |              |              |              |              |                |              |                |
|                           |              |              |              | PROVE N      | MECCANI      | CHE          |              |                |              |                |
| C S                       | •            |              | •            |              |              |              | •            | •              |              |                |
| Data                      | 3/4/06       |              | 3/4/06       |              |              |              | 3/4/06       | 3/4/06         |              |                |
| TDisc                     |              |              |              |              |              |              |              |                |              |                |
| Data                      |              |              |              |              |              |              |              |                |              |                |
| TR                        |              |              |              |              |              |              |              |                |              |                |
| Data                      |              |              |              |              |              |              |              |                |              |                |
| CP                        | •            | • x 3        |              | • x 3        | ● x 2        | • x 6        |              |                | • x 4        | • x 3          |
| Data                      | 30/3/06      | 30/3/06      |              | 30/3/06      | 30/3/06      | 30/3/06      |              |                | 30/3/06      | 30/3/06        |
| Trazione                  |              |              |              |              |              |              |              |                |              |                |
| Data                      |              |              |              |              |              |              |              |                |              |                |
| Durabilità                |              |              |              |              |              |              |              |                |              |                |
| Data                      |              |              |              |              |              |              |              |                |              |                |

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

## RICONOSCIMENTO E DESCRIZIONE

(Normativa ISRM 1975)

| Sondaggio         | SA8              | Descrizione                                                                       |  |  |  |  |  |  |
|-------------------|------------------|-----------------------------------------------------------------------------------|--|--|--|--|--|--|
| Campione          | A                | Calcarenite di colore biancastro, a grana fina,                                   |  |  |  |  |  |  |
| Profondità<br>[m] | $3.20 \div 3.50$ | mediamente cementata.                                                             |  |  |  |  |  |  |
| Prove<br>eseguite | γ, CS, CP        |                                                                                   |  |  |  |  |  |  |
| Sondaggio         | SA8              | Descrizione                                                                       |  |  |  |  |  |  |
| Campione          | В                | Calacarenite di colore variabile dal biancastro al                                |  |  |  |  |  |  |
| Profondità [m]    | 4.10 ÷<br>4.20   | giallastro, a grana fina, da debolmente a mediamen cementata, porosa e vacuolare. |  |  |  |  |  |  |
| Prove<br>eseguite | СР               |                                                                                   |  |  |  |  |  |  |
| Sondaggio         | SA8              | Descrizione                                                                       |  |  |  |  |  |  |
| Campione          | С                | Calacarenite di colore variabile dal biancastro al                                |  |  |  |  |  |  |
| Profondità<br>[m] | 4.60 ÷<br>4.80   | giallastro, a grana fina, da debolmente a mediamente cementata.                   |  |  |  |  |  |  |
| Prove<br>eseguite | γ, CS            |                                                                                   |  |  |  |  |  |  |
| Sondaggio         | SA8              | Descrizione                                                                       |  |  |  |  |  |  |
| Campione          | D                | Calacarenite di colore variabile dal biancastro al                                |  |  |  |  |  |  |
| Profondità<br>[m] | 5.00 ÷ 5.10      | giallastro, a grana fina, da debolmente a mediame cementata, a tratti vacuolare.  |  |  |  |  |  |  |
| Prove<br>eseguite | CP               |                                                                                   |  |  |  |  |  |  |
| Sondaggio         | SA8              | Descrizione                                                                       |  |  |  |  |  |  |
| Campione          | E                | Calcarenite di colore biancastro giallastro, a grana                              |  |  |  |  |  |  |

Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

## RICONOSCIMENTO E DESCRIZIONE

(Normativa ISRM 1975)

| Profondità        | 5.40 ÷ | fina, | a | tratti | porosa, | da | mediamente | а | ben | cementata. |
|-------------------|--------|-------|---|--------|---------|----|------------|---|-----|------------|
| [m]               | 5.50   |       |   |        |         |    |            |   |     |            |
| Prove<br>esequite | СР     |       |   |        |         |    |            |   |     |            |

| Modulo 9.29E - Rev. 1 d | del 06/06/05 | Ing. Gabriele Speciale                                          |
|-------------------------|--------------|-----------------------------------------------------------------|
| Sondaggio               | SA8          | Descrizione                                                     |
| Campione                | F            | Calacarenite di colore variabile dal biancastro al              |
| Profondità              | 5.60 ÷       |                                                                 |
| [m]                     | 5.80         | da debolmente a mediamente cementata.                           |
| Prove<br>eseguite       | CP           |                                                                 |
| Sondaggio               | SA8          | Descrizione                                                     |
| Campione                | G            | Calcarenite di colore biancastro, a grana fina,                 |
| Profondità              | 6.00 ÷       | mediamente cementata.                                           |
| [m]                     | 6.30         |                                                                 |
| Prove<br>eseguite       | γ, CS        |                                                                 |
| Sondaggio               | SA8          | Descrizione                                                     |
| Campione                | Н            | Calcarenite di colore giallo ocra, a grana medio-               |
| Profondità              | 16.00 ÷      | fina, da debolmente a mediamente cementata, porosa e vacuolare. |
| [m]                     | 16.20        | vacuotare.                                                      |
| Prove<br>eseguite       | γ, CS        |                                                                 |
| Sondaggio               | SA9          | Descrizione                                                     |
| Campione                | A            | Calcarenite di colore biancastro con patine ocracee,            |
| Profondità              | 6.50 ÷       | fossilifera, ben cementata, vacuolare.                          |
| [m]                     | 6.70         |                                                                 |



Richiedente: SYSTRA S.A.

Lavoro: Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

## RICONOSCIMENTO E DESCRIZIONE

(Normativa ISRM 1975)

| Prove<br>eseguite | γ, CS   |                                                  |
|-------------------|---------|--------------------------------------------------|
| Sondaggio         | SA9     | Descrizione                                      |
| Campione          | В       | Calcarenite di colore biancastro, a grana medio- |
| Profondità        | 10.70 ÷ | grossa, fossilifera, vacuolare, ben cementata.   |
| [m]               | 11.00   |                                                  |
| Prove<br>eseguite | γ, CS   |                                                  |

Il Direttore del Laboratorio Ing. Gabriele Speciale

Modulo 9.29E - Rev. 1 del 06/06/05



Certificato n. -

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

#### PROVA DI CARICO PUNTUALE ISRM (1985) PROVA ASSIALE

| Data<br>prova<br>2006 | Sondaggio | Campione | Profondità<br>[m] | 2L<br>[mm] | Altez<br>za<br>D<br>[mm] |       | Diametro<br>equivale<br>nte<br>D <sub>e</sub><br>[mm] | Indice di<br>carico<br>puntuale<br>I <sub>s</sub><br>[N/mm <sup>2</sup> ] | Fattore<br>di<br>correzio<br>ne<br>F | Indice di<br>carico<br>puntuale<br>standard<br>I <sub>s(50)<sub>2</sub></sub><br>[N/mm <sup>2</sup> ] |
|-----------------------|-----------|----------|-------------------|------------|--------------------------|-------|-------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------|
| 30/3                  | SA8       | Α        | 3.20 ÷ 3.50       | 77         | 26                       | 3558  | 50.5                                                  | 1.396                                                                     | 1.004                                | 1.40                                                                                                  |
| 30/3                  | SA8       | B/1      | 4.10 ÷ 4.20       | 77         | 32                       | 1281  | 56.0                                                  | 0.408                                                                     | 1.052                                | 0.43                                                                                                  |
| 30/3                  | SA8       | B/2      | 4.10 ÷ 4.20       | 77         | 38                       | 2745  | 61.0                                                  | 0.737                                                                     | 1.094                                | 0.81                                                                                                  |
| 30/3                  | SA8       | B/3      | 4.10 ÷ 4.20       | 77         | 39                       | 3660  | 61.8                                                  | 0.957                                                                     | 1.100                                | 1.05                                                                                                  |
| 30/3                  | SA8       | D/1      | 5.00 ÷ 5.10       | 78         | 32                       | 11970 | 56.4                                                  | 3.767                                                                     | 1.055                                | 3.98                                                                                                  |
| 30/3                  | SA8       | D/2      | 5.00 ÷ 5.10       | 78         | 28                       | 7755  | 52.7                                                  | 2.789                                                                     | 1.024                                | 2.86                                                                                                  |
| 30/3                  | SA8       | D/3      | 5.00 ÷ 5.10       | 78         | 31                       | 5445  | 55.5                                                  | 1.769                                                                     | 1.048                                | 1.85                                                                                                  |
| 30/3                  | SA8       | E/1      | 5.40 ÷ 5.50       | 78         | 36                       | 11955 | 59.8                                                  | 3.344                                                                     | 1.084                                | 3.62                                                                                                  |
| 30/3                  | SA8       | E/2      | 5.40 ÷ 5.50       | 78         | 30                       | 7770  | 54.6                                                  | 2.608                                                                     | 1.040                                | 2.71                                                                                                  |
| 30/3                  | SA8       | F/1      | 5.60 ÷ 6.00       | 72         | 32                       | 2100  | 54.2                                                  | 0.716                                                                     | 1.037                                | 0.74                                                                                                  |
| 30/3                  | SA8       | F/2      | 5.60 ÷ 6.00       | 78         | 42                       | 8835  | 64.6                                                  | 2.118                                                                     | 1.122                                | 2.38                                                                                                  |
| 30/3                  | SA8       | F/3      | 5.60 ÷ 6.00       | 78         | 36                       | 9015  | 59.8                                                  | 2.521                                                                     | 1.084                                | 2.73                                                                                                  |
| 30/3                  | SA8       | F/4      | 5.60 ÷ 6.00       | 77         | 37                       | 3225  | 60.2                                                  | 0.889                                                                     | 1.087                                | 0.97                                                                                                  |
| 30/3                  | SA8       | F/5      | 5.60 ÷ 6.00       | 74         | 32                       | 2280  | 54.9                                                  | 0.756                                                                     | 1.043                                | 0.79                                                                                                  |
| 30/3                  | SA8       | F/6      | 5.60 ÷ 6.00       | 75         | 33                       | 2265  | 56.1                                                  | 0.719                                                                     | 1.053                                | 0.76                                                                                                  |
| 30/3                  | SA9       | A/1      | 6.50 ÷ 6.00       | 81         | 32                       | 8670  | 57.4                                                  | 2.627                                                                     | 1.064                                | 2.80                                                                                                  |
| 30/3                  | SA9       | A/2      | 6.50 ÷ 6.00       | 81         | 41                       | 8400  | 65.0                                                  | 1.987                                                                     | 1.126                                | 2.24                                                                                                  |
| 30/3                  | SA9       | A/3      | 6.50 ÷ 6.00       | 81         | 26                       | 6270  | 51.8                                                  | 2.338                                                                     | 1.016                                | 2.38                                                                                                  |
| 30/3                  | SA9       | A/4      | 6.50 ÷ 6.00       | 77         | 37                       | 5670  | 60.2                                                  | 1.563                                                                     | 1.087                                | 1.70                                                                                                  |
| 30/3                  | SA9       | B/1      | 10.70 ÷ 11.00     | 82         | 38                       | 8295  | 63.0                                                  | 2.091                                                                     | 1.110                                | 2.32                                                                                                  |
| 30/3                  | SA9       | B/2      | 10.70 ÷ 11.00     | 82         | 40                       | 10770 | 64.6                                                  | 2.579                                                                     | 1.122                                | 2.89                                                                                                  |
| 30/3                  | SA9       | B/3      | 10.70 ÷ 11.00     | 79         | 31                       | 12660 | 55.8                                                  | 4.060                                                                     | 1.051                                | 4.27                                                                                                  |

note: Provini di forma cilindrica

Lo Sperimentatore

Salvatore Febo

Via Francesco Lo Jacono n. 149 - 90144 Palermo - Tel./Fax 091302401

Cap. Soc. € 51.480,00 int. vers. - C.C.I.A.A. di PA 132403 - Trib. PA Soc. 27277 - Partita I.V.A. 03317020828

www.laboratoriometro.it E-mail: info@laboratoriometro.it



Modulo 9.45A - Rev. 0 del 17/02/01

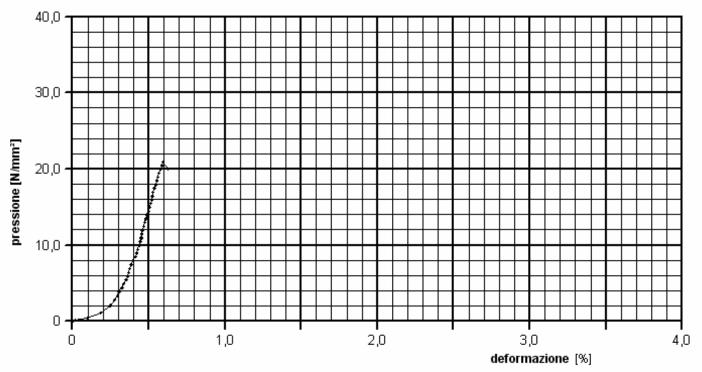
Cap. Soc. € 51.480,00 int. vers. - C.C.I.A.A. di PA 132403 - Trib. PA Soc. 27277 - Partita I.V.A. 03317020828

www.laboratoriometro.it

E-mail: info@laboratoriometro.it



| Verbale di accett | azione 04/  | 2006        |              |                 | Cer             | tificato n' | ° <del>.</del> |
|-------------------|-------------|-------------|--------------|-----------------|-----------------|-------------|----------------|
| Richiedente SY    | STRA S.A    | ١           |              |                 |                 |             |                |
| Lavoro Metropo    | olitana Aut | tomatica Le | eggera di Pa | lermo - Oreto-l | Notarbartolo    |             |                |
| Sondaggio         | SA8         | Campione    | Α            | Profondità da m | 3.20            | a m         | 3.50           |
| Data inizio prova | 3/4/20      | 006         |              |                 | Data fine prova | 4/4         | 4/2006         |


# PROVA A COMPRESSIONE SU PROVINI CILINDRICI - ISRM (1978) CURVA PRESSIONE - DEFORMAZIONE

$$d = 78 \text{ mm}$$

$$\gamma = 20.5 \, \text{kN/m}^3$$

$$S_0 = 4778 \text{ mm}^2$$

$$v = 0.5$$
 N/mm<sup>2</sup>/sec



Schema di rottura



Note

Lo Sperimentatore Salvatore Febo



Certificato n. -

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio SA8 Campione A Profondità da m 3,20 a m 3,50

## RISULTATI DELLA PROVA DI COMPRESSIONE SEMPLICE - ISRM (1978)

Data inizio prova 3/4/2006

Data fine prova 4/4/2006

| ε [%] σ [N/mm²]  0.000 0.000 0.015 0.144 0.095 0.377 0.184 1.049 0.246 2.066 0.276 2.800 0.296 3.334 0.304 3.855 0.324 4.370 0.332 4.885 0.351 5.400 0.359 5.902 0.368 6.411 0.376 6.919 0.384 7.422 0.392 7.924 0.412 8.439 0.420 8.935 0.428 9.443 0.436 9.946 0.444 10.442 0.449 10.950 0.453 11.446 0.457 11.949 0.466 12.451 0.474 12.953 0.482 13.455 0.490 13.964 0.498 14.454 0.506 14.956 0.515 15.458                                                                                                                                                                                                                                                                                                                                          | Data IIIIZIO | prova 3/4/20              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------|
| 0.015       0.144         0.095       0.377         0.184       1.049         0.246       2.066         0.276       2.800         0.296       3.334         0.304       3.855         0.324       4.370         0.332       4.885         0.351       5.400         0.359       5.902         0.368       6.411         0.376       6.919         0.384       7.422         0.392       7.924         0.412       8.439         0.420       8.935         0.428       9.443         0.436       9.946         0.444       10.442         0.449       10.950         0.453       11.446         0.457       11.949         0.466       12.451         0.474       12.953         0.482       13.455         0.498       14.454         0.506       14.956 | ε [%]        | $\sigma  [\text{N/mm}^2]$ |
| 0.095       0.377         0.184       1.049         0.246       2.066         0.276       2.800         0.296       3.334         0.304       3.855         0.324       4.370         0.332       4.885         0.351       5.400         0.359       5.902         0.368       6.411         0.376       6.919         0.384       7.422         0.392       7.924         0.412       8.439         0.420       8.935         0.428       9.443         0.436       9.946         0.444       10.442         0.449       10.950         0.453       11.446         0.457       11.949         0.466       12.451         0.474       12.953         0.482       13.455         0.498       14.454         0.506       14.956                           | 0.000        | 0.000                     |
| 0.184       1.049         0.246       2.066         0.276       2.800         0.296       3.334         0.304       3.855         0.324       4.370         0.332       4.885         0.351       5.400         0.359       5.902         0.368       6.411         0.376       6.919         0.384       7.422         0.392       7.924         0.412       8.439         0.420       8.935         0.428       9.443         0.436       9.946         0.444       10.442         0.449       10.950         0.453       11.446         0.457       11.949         0.466       12.451         0.474       12.953         0.482       13.455         0.490       13.964         0.498       14.454         0.506       14.956                          | 0.015        | 0.144                     |
| 0.246       2.066         0.276       2.800         0.296       3.334         0.304       3.855         0.324       4.370         0.332       4.885         0.351       5.400         0.359       5.902         0.368       6.411         0.376       6.919         0.384       7.422         0.392       7.924         0.412       8.439         0.420       8.935         0.428       9.443         0.436       9.946         0.444       10.442         0.449       10.950         0.453       11.446         0.457       11.949         0.466       12.451         0.474       12.953         0.482       13.455         0.490       13.964         0.498       14.454         0.506       14.956                                                    | 0.095        | 0.377                     |
| 0.276       2.800         0.296       3.334         0.304       3.855         0.324       4.370         0.332       4.885         0.351       5.400         0.359       5.902         0.368       6.411         0.376       6.919         0.384       7.422         0.392       7.924         0.412       8.439         0.420       8.935         0.428       9.443         0.436       9.946         0.444       10.442         0.449       10.950         0.453       11.446         0.457       11.949         0.466       12.451         0.474       12.953         0.482       13.455         0.498       14.454         0.506       14.956                                                                                                         | 0.184        | 1.049                     |
| 0.296       3.334         0.304       3.855         0.324       4.370         0.332       4.885         0.351       5.400         0.359       5.902         0.368       6.411         0.376       6.919         0.384       7.422         0.392       7.924         0.412       8.439         0.420       8.935         0.428       9.443         0.436       9.946         0.444       10.442         0.449       10.950         0.453       11.446         0.457       11.949         0.466       12.451         0.474       12.953         0.482       13.455         0.490       13.964         0.498       14.454         0.506       14.956                                                                                                        | 0.246        | 2.066                     |
| 0.304       3.855         0.324       4.370         0.332       4.885         0.351       5.400         0.359       5.902         0.368       6.411         0.376       6.919         0.384       7.422         0.392       7.924         0.412       8.439         0.420       8.935         0.428       9.443         0.436       9.946         0.444       10.442         0.449       10.950         0.453       11.446         0.457       11.949         0.466       12.451         0.474       12.953         0.482       13.455         0.490       13.964         0.498       14.454         0.506       14.956                                                                                                                                  | 0.276        | 2.800                     |
| 0.324       4.370         0.332       4.885         0.351       5.400         0.359       5.902         0.368       6.411         0.376       6.919         0.384       7.422         0.392       7.924         0.412       8.439         0.420       8.935         0.428       9.443         0.436       9.946         0.444       10.442         0.449       10.950         0.453       11.446         0.457       11.949         0.466       12.451         0.474       12.953         0.482       13.455         0.490       13.964         0.498       14.454         0.506       14.956                                                                                                                                                            | 0.296        | 3.334                     |
| 0.332       4.885         0.351       5.400         0.359       5.902         0.368       6.411         0.376       6.919         0.384       7.422         0.392       7.924         0.412       8.439         0.420       8.935         0.428       9.443         0.436       9.946         0.444       10.442         0.449       10.950         0.453       11.446         0.457       11.949         0.466       12.451         0.474       12.953         0.482       13.455         0.490       13.964         0.498       14.454         0.506       14.956                                                                                                                                                                                      | 0.304        | 3.855                     |
| 0.351       5.400         0.359       5.902         0.368       6.411         0.376       6.919         0.384       7.422         0.392       7.924         0.412       8.439         0.420       8.935         0.428       9.443         0.436       9.946         0.444       10.442         0.449       10.950         0.453       11.446         0.457       11.949         0.466       12.451         0.474       12.953         0.482       13.455         0.490       13.964         0.498       14.454         0.506       14.956                                                                                                                                                                                                                | 0.324        | 4.370                     |
| 0.359       5.902         0.368       6.411         0.376       6.919         0.384       7.422         0.392       7.924         0.412       8.439         0.420       8.935         0.428       9.443         0.436       9.946         0.444       10.442         0.449       10.950         0.453       11.446         0.457       11.949         0.466       12.451         0.474       12.953         0.482       13.455         0.490       13.964         0.498       14.454         0.506       14.956                                                                                                                                                                                                                                          | 0.332        | 4.885                     |
| 0.368       6.411         0.376       6.919         0.384       7.422         0.392       7.924         0.412       8.439         0.420       8.935         0.428       9.443         0.436       9.946         0.444       10.442         0.449       10.950         0.453       11.446         0.457       11.949         0.466       12.451         0.474       12.953         0.482       13.455         0.490       13.964         0.498       14.454         0.506       14.956                                                                                                                                                                                                                                                                    | 0.351        | 5.400                     |
| 0.376       6.919         0.384       7.422         0.392       7.924         0.412       8.439         0.420       8.935         0.428       9.443         0.436       9.946         0.444       10.442         0.449       10.950         0.453       11.446         0.457       11.949         0.466       12.451         0.474       12.953         0.482       13.455         0.490       13.964         0.498       14.454         0.506       14.956                                                                                                                                                                                                                                                                                              | 0.359        | 5.902                     |
| 0.384       7.422         0.392       7.924         0.412       8.439         0.420       8.935         0.428       9.443         0.436       9.946         0.444       10.442         0.449       10.950         0.453       11.446         0.457       11.949         0.466       12.451         0.474       12.953         0.482       13.455         0.490       13.964         0.498       14.454         0.506       14.956                                                                                                                                                                                                                                                                                                                        | 0.368        | 6.411                     |
| 0.392       7.924         0.412       8.439         0.420       8.935         0.428       9.443         0.436       9.946         0.444       10.442         0.449       10.950         0.453       11.446         0.457       11.949         0.466       12.451         0.474       12.953         0.482       13.455         0.490       13.964         0.498       14.454         0.506       14.956                                                                                                                                                                                                                                                                                                                                                  | 0.376        | 6.919                     |
| 0.412       8.439         0.420       8.935         0.428       9.443         0.436       9.946         0.444       10.442         0.449       10.950         0.453       11.446         0.457       11.949         0.466       12.451         0.474       12.953         0.482       13.455         0.490       13.964         0.498       14.454         0.506       14.956                                                                                                                                                                                                                                                                                                                                                                            | 0.384        | 7.422                     |
| 0.420       8.935         0.428       9.443         0.436       9.946         0.444       10.442         0.449       10.950         0.453       11.446         0.457       11.949         0.466       12.451         0.474       12.953         0.482       13.455         0.490       13.964         0.498       14.454         0.506       14.956                                                                                                                                                                                                                                                                                                                                                                                                      | 0.392        | 7.924                     |
| 0.428       9.443         0.436       9.946         0.444       10.442         0.449       10.950         0.453       11.446         0.457       11.949         0.466       12.451         0.474       12.953         0.482       13.455         0.490       13.964         0.498       14.454         0.506       14.956                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.412        | 8.439                     |
| 0.436       9.946         0.444       10.442         0.449       10.950         0.453       11.446         0.457       11.949         0.466       12.451         0.474       12.953         0.482       13.455         0.490       13.964         0.498       14.454         0.506       14.956                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.420        | 8.935                     |
| 0.444 10.442<br>0.449 10.950<br>0.453 11.446<br>0.457 11.949<br>0.466 12.451<br>0.474 12.953<br>0.482 13.455<br>0.490 13.964<br>0.498 14.454<br>0.506 14.956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.428        | 9.443                     |
| 0.449     10.950       0.453     11.446       0.457     11.949       0.466     12.451       0.474     12.953       0.482     13.455       0.490     13.964       0.498     14.454       0.506     14.956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.436        | 9.946                     |
| 0.453 11.446<br>0.457 11.949<br>0.466 12.451<br>0.474 12.953<br>0.482 13.455<br>0.490 13.964<br>0.498 14.454<br>0.506 14.956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.444        | 10.442                    |
| 0.457       11.949         0.466       12.451         0.474       12.953         0.482       13.455         0.490       13.964         0.498       14.454         0.506       14.956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.449        | 10.950                    |
| 0.466       12.451         0.474       12.953         0.482       13.455         0.490       13.964         0.498       14.454         0.506       14.956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.453        | 11.446                    |
| 0.474       12.953         0.482       13.455         0.490       13.964         0.498       14.454         0.506       14.956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.457        | 11.949                    |
| 0.482       13.455         0.490       13.964         0.498       14.454         0.506       14.956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.466        | 12.451                    |
| 0.490 13.964<br>0.498 14.454<br>0.506 14.956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.474        | 12.953                    |
| 0.498 14.454<br>0.506 14.956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.482        | 13.455                    |
| 0.506 14.956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.490        | 13.964                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.498        | 14.454                    |
| 0.515 15.458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.506        | 14.956                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.515        | 15.458                    |

| ε [%] | $\sigma$ [N/mm <sup>2</sup> ] |
|-------|-------------------------------|
| 0.519 | 15.954                        |
| 0.523 | 16.457                        |
| 0.527 | 16.959                        |
| 0.536 | 17.455                        |
| 0.544 | 17.957                        |
| 0.552 | 18.466                        |
| 0.560 | 18.956                        |
| 0.568 | 19.458                        |
| 0.577 | 19.954                        |
| 0.585 | 20.450                        |
| 0.593 | 20.908                        |
| 0.623 | 20.042                        |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
| I     |                               |

| ε [%] | $\sigma[\text{N/mm}^2]$ |
|-------|-------------------------|
|       |                         |
|       |                         |
|       |                         |
|       |                         |
|       |                         |
|       |                         |
|       |                         |
|       |                         |
|       |                         |
|       |                         |
|       |                         |
|       |                         |
|       |                         |
|       |                         |
|       |                         |
|       |                         |
|       |                         |
|       |                         |
|       |                         |
|       |                         |
|       |                         |
|       |                         |
|       |                         |
|       |                         |

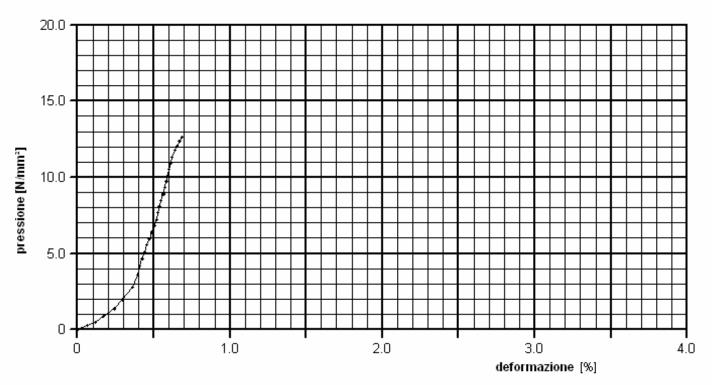
Lo Sperimentatore Salvatore Febo

Cap. Soc. € 51.480,00 int. vers. - C.C.I.A.A. di PA 132403 - Trib. PA Soc. 27277 - Partita I.V.A. 03317020828

www.laboratoriometro.it

E-mail: info@laboratoriometro.it




| Verbale di accet  | tazione 04/ | 2006        |              |                 | Cer             | tificato n' | °      |
|-------------------|-------------|-------------|--------------|-----------------|-----------------|-------------|--------|
| Richiedente SY    | STRA S.A    | ١           |              |                 |                 |             |        |
| Lavoro Metrop     | olitana Aut | tomatica Le | eggera di Pa | lermo - Oreto-N | Notarbartolo    |             |        |
| Sondaggio         | SA8         | Campione .  | С            | Profondità da m | 4.60            | a m         | 4.80   |
| Data inizio prova | 3/4/2       | 006         |              |                 | Data fine prova | 4/4         | 4/2006 |

# PROVA A COMPRESSIONE SU PROVINI CILINDRICI - ISRM (1978) CURVA PRESSIONE - DEFORMAZIONE

$$d = 78 \text{ mm}$$

$$\gamma = 19.5 \text{ kN/m}^3$$

$$S_0 = 4778 \text{ mm}^2$$



Schema di rottura

Note

Lo Sperimentatore Salvatore Febo



Certificato n. -

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio SA8 Campione C Profondità da m 4.60 a m 4.80

## RISULTATI DELLA PROVA DI COMPRESSIONE SEMPLICE - ISRM (1978)

 $\sigma [N/mm^2]$ 

Data inizio prova 3/4/2006

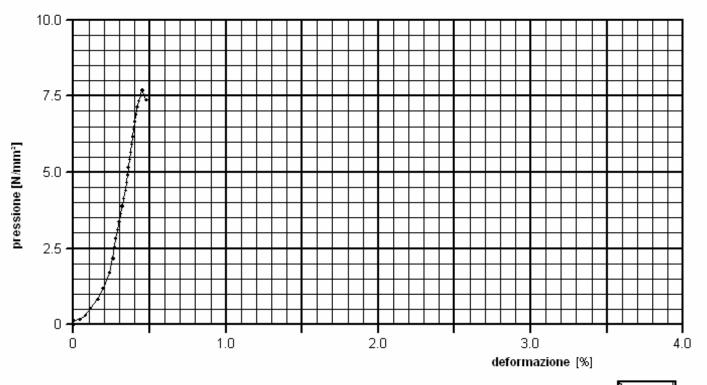
Data fine prova 4/4/2006

| Data inizio | prova 3/4/2               | 2006 |       |
|-------------|---------------------------|------|-------|
| ε [%]       | $\sigma  [\text{N/mm}^2]$ |      | ε [%] |
| 0.000       | 0.000                     |      |       |
| 0.062       | 0.279                     |      |       |
| 0.116       | 0.495                     |      |       |
| 0.169       | 0.888                     |      |       |
| 0.241       | 1.373                     |      |       |
| 0.293       | 1.961                     |      |       |
| 0.361       | 2.808                     |      |       |
| 0.393       | 3.572                     |      |       |
| 0.408       | 4.170                     |      |       |
| 0.423       | 4.655                     |      |       |
| 0.439       | 5.099                     |      |       |
| 0.455       | 5.543                     |      |       |
| 0.470       | 5.977                     |      |       |
| 0.486       | 6.400                     |      |       |
| 0.502       | 6.823                     |      |       |
| 0.518       | 7.236                     |      |       |
| 0.526       | 7.659                     |      |       |
| 0.536       | 8.082                     |      |       |
| 0.546       | 8.495                     |      |       |
| 0.562       | 8.908                     |      |       |
| 0.572       | 9.321                     |      |       |
| 0.582       | 9.724                     |      |       |
| 0.591       | 10.147                    |      |       |
| 0.601       | 10.549                    |      |       |
| 0.611       | 10.962                    |      |       |
| 0.620       | 11.344                    |      |       |
| 0.636       | 11.767                    |      |       |
| 0.653       | 12.067                    |      |       |
| 0.669       | 12.366                    |      |       |
| 0.686       | 12.655                    |      |       |
|             |                           |      |       |

| U     | ata fine prova                |
|-------|-------------------------------|
| ε [%] | $\sigma$ [N/mm <sup>2</sup> ] |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |
|       |                               |

Lo Sperimentatore Salvatore Febo




| Verbale di accett | azione 🛚  | 4/2006        |            |                   | Cer             | tificato i | n°      |
|-------------------|-----------|---------------|------------|-------------------|-----------------|------------|---------|
| Richiedente SY    | STRA S    | .A.           |            |                   |                 |            |         |
| Lavoro Metropo    | olitana A | utomatica Leç | ggera di F | Palermo - Oreto-l | Votarbartolo    |            |         |
| Sondaggio         | SA8       | Campione      | G          | Profondità da m   | 6.00            | a m        | 6.30    |
| Data inizio prova | 3/4/      | /2006         |            |                   | Data fine prova | 4          | /4/2006 |

# PROVA A COMPRESSIONE SU PROVINI CILINDRICI - ISRM (1978) CURVA PRESSIONE - DEFORMAZIONE

$$d = 78 \text{ mm}$$

$$\gamma = 19.3 \, \text{kN/m}^3$$

$$S_0 = 4778 \text{ mm}^2$$



Schema (

Note

Lo Sperimentatore Salvatore Febo



Certificato n. -

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio SA8 Campione G Profondità da m 6.00 a m 6.30

## RISULTATI DELLA PROVA DI COMPRESSIONE SEMPLICE - ISRM (1978)

Data inizio prova 3/4/2006

Data fine prova 4/4/2006

 $\sigma$  [N/mm<sup>2</sup>]

ε [%]

| Data inizio | prova 3/4/2                   | 2006 |
|-------------|-------------------------------|------|
| ε [%]       | $\sigma$ [N/mm <sup>2</sup> ] | ε [% |
| 0.000       | 0.000                         | 0.47 |
| 0.004       | 0.144                         |      |
| 0.040       | 0.170                         |      |
| 0.076       | 0.301                         |      |
| 0.111       | 0.540                         |      |
| 0.158       | 0.835                         |      |
| 0.192       | 1.193                         |      |
| 0.237       | 1.708                         |      |
| 0.258       | 2.172                         |      |
| 0.267       | 2.537                         |      |
| 0.277       | 2.832                         |      |
| 0.288       | 3.102                         |      |
| 0.298       | 3.372                         |      |
| 0.308       | 3.635                         |      |
| 0.318       | 3.893                         |      |
| 0.329       | 4.150                         |      |
| 0.339       | 4.401                         |      |
| 0.346       | 4.659                         |      |
| 0.353       | 4.916                         |      |
| 0.358       | 5.167                         |      |
| 0.366       | 5.419                         |      |
| 0.372       | 5.670                         |      |
| 0.379       | 5.915                         |      |
| 0.387       | 6.172                         |      |
| 0.394       | 6.417                         |      |
| 0.399       | 6.668                         |      |
| 0.406       | 6.900                         |      |
| 0.417       | 7.158                         |      |
| 0.428       | 7.340                         |      |
| 0.439       | 7.522                         |      |
| 0.449       | 7.698                         |      |
|             |                               |      |

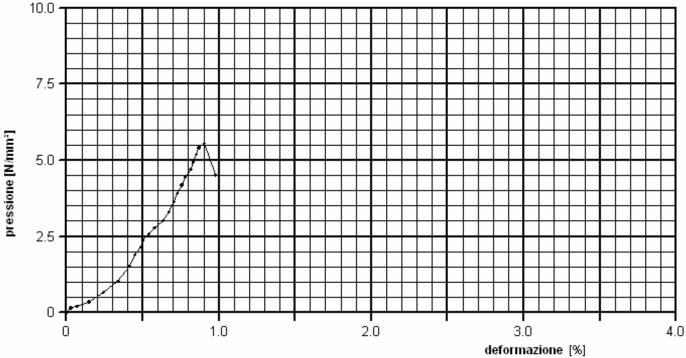
| ε [%] | $\sigma[\text{N/m}\text{m}^2]$ |
|-------|--------------------------------|
| 0.476 | 7.384                          |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |

Il Direttore del Laboratorio Ing. Gabriele Speciale

Lo Sperimentatore Salvatore Febo



| Verbale di accet  | tazione <u>O</u> | 4/2006       |             |                   | Cer             | tificato i | n°      |
|-------------------|------------------|--------------|-------------|-------------------|-----------------|------------|---------|
| Richiedente SY    | STRA S           | .A.          |             |                   |                 |            |         |
| Lavoro Metrop     | olitana A        | utomatica Le | ggera di Pa | alermo - Oreto-l  | Notarbartolo    |            |         |
| Sondaggio         | SA8              | Campione     | Н           | . Profondità da m | 16.00           | am         | 16.20   |
| Data inizio prova | 3/4/             | 2006         |             |                   | Data fine prova | 4          | /4/2006 |


# PROVA A COMPRESSIONE SU PROVINI CILINDRICI - ISRM (1978) CURVA PRESSIONE - DEFORMAZIONE

$$d = 77 \text{ mm}$$

$$\gamma$$
 = 18.2 kN/m<sup>3</sup>

$$S_0 = 4657 \text{ mm}^2$$

$$v = 0.5$$
 N/mm<sup>2</sup>/sec



Schema di rottura



Note

Lo Sperimentatore Salvatore Febo



Certificato n. -

Richiedente SYSTRA S.A.

Lavoro Metropolitana Automatica Leggera di Palermo - Oreto-Notarbartolo

Sondaggio SA8 Campione H Profondità da m 16.00 a m 16.20

## RISULTATI DELLA PROVA DI COMPRESSIONE SEMPLICE - ISRM (1978)

Data inizio prova 3/4/2006

Data fine prova 4/4/2006

|       | prova 3/4/2                   | 00 |
|-------|-------------------------------|----|
| ε [%] | $\sigma$ [N/mm <sup>2</sup> ] |    |
| 0.000 | 0.000                         |    |
| 0.027 | 0.155                         |    |
| 0.066 | 0.213                         |    |
| 0.145 | 0.348                         |    |
| 0.241 | 0.657                         |    |
| 0.337 | 1.035                         |    |
| 0.411 | 1.527                         |    |
| 0.447 | 1.887                         |    |
| 0.484 | 2.143                         |    |
| 0.501 | 2.371                         |    |
| 0.539 | 2.581                         |    |
| 0.576 | 2.787                         |    |
| 0.634 | 3.013                         |    |
| 0.670 | 3.324                         |    |
| 0.706 | 3.646                         |    |
| 0.723 | 3.917                         |    |
| 0.755 | 4.187                         |    |
| 0.777 | 4.451                         |    |
| 0.814 | 4.707                         |    |
| 0.831 | 4.952                         |    |
| 0.849 | 5.186                         |    |
| 0.866 | 5.409                         |    |
| 0.904 | 5.551                         |    |
| 0.976 | 4.520                         |    |
|       |                               |    |
|       |                               |    |
|       |                               |    |
|       |                               |    |
|       |                               |    |
|       |                               |    |
|       |                               |    |

| ε [%]    | $\sigma$ [N/mm <sup>2</sup> ] |
|----------|-------------------------------|
| ε [ /0 ] | σ [ιν/ιιιιιι ]                |
|          |                               |
|          |                               |
|          |                               |
|          |                               |
|          |                               |
|          |                               |
|          |                               |
|          |                               |
|          |                               |
|          |                               |
|          |                               |
|          |                               |
|          |                               |
|          |                               |
|          |                               |
|          |                               |
|          |                               |
|          |                               |
|          |                               |
|          |                               |
|          |                               |
|          |                               |
|          |                               |
|          |                               |
|          |                               |
|          |                               |
|          |                               |

ε [%]  $\sigma [N/mm^2]$ 

Lo Sperimentatore Salvatore Febo